

P. 112 SP and SPN AC MCBs

P. 122 Type AC -DP and FP RCCBs

P. 132 Mounting and finishing accessories for Lexic

P. 145 MicroRex analogue time switches

P. 163 Remote control dimmers

Technical data

Lexic : Protection,

isolation,

signalling and metering

control,

P. 116-121 MCBs and Isolators

Loadster MCBs

P. 171-173 Loadster MCBs & Isolators

P. 112 DP and TP AC MCBs

P. 113 TPN, FP AC MCBs and Isolators

P. 114 DC MCBs

P. 123 Type A-S and type Hpi DP and FP RCCBs

P. 124 Type AC - DP and FP RCBOs

P. 125 Type AC and type Hpi SPN RCBOs

P. 132 Auxiliaries for MCBs, Isolators, RCBOs and RCCBs

P. 136 Motor protection circuit breakers and accessories

P. 139-140 Voltage surge protectors and accessories

P. 144 MaxiRex analogue time switches and accessories

P. 145 EconoRex analogue time switches and accessories

P. 146-147 AstroRex & AlphaRex digital time switch

P. 156 Rex time lag switch

P. 158 Multifunctional time delay relay

P. 161
Power
contactors and
accessories

P. 164 Changeover switches

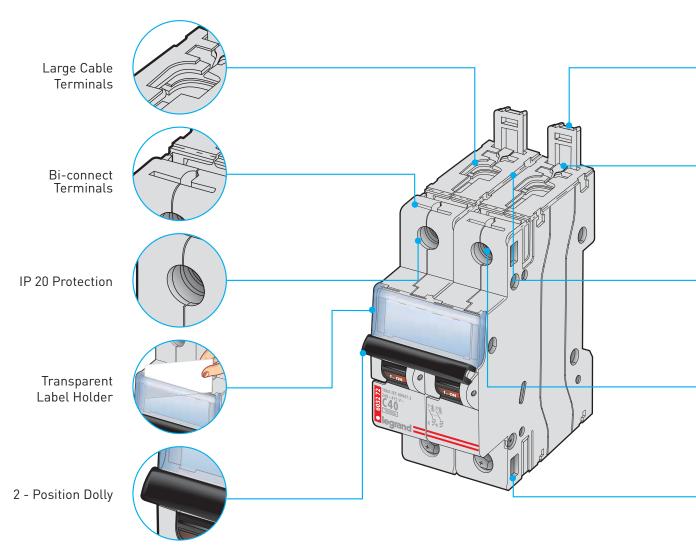
P. 164
Push buttons and control switches and accessories

P. 165 Indicators

P. 165-166 Ammeters, voltmeters, CTs and selector switches

P. 128-131 RCDs

P. 133-135Auxiliaries for MCBs
Isolators and RCDs



P. 149-155 Rex time switches

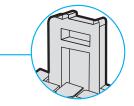
P. 170 MCBs, RCDs, Isolators and other modular DIN rail devices

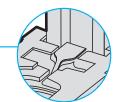
□ legrand

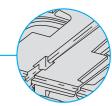
MODULAR LEXIC RANGE

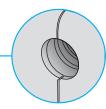
Protection & Isolation

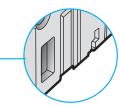
Controlling


Metering






2 Dual position Din Rail Clamps


Fully Insulated Safety Shutters

Air Circulation

Combined Screws

2 Type of Busbars

Signalling

LEXIC Safe, simple and flexible

Lexic combines the latest technology with aesthetics and flexibility to design modular concepts for protection, isolation, controlling, signalling and metering.

thermal magnetic MCBs up to 125 A

 \oplus

Dimensions (p. 170) Technical data (p. 115-121)

10 kA ISI marked as per IS / IEC 60898-1 : 2002 (0.5-63A) 15 kA conforming to IEC 60947 upto 25 A rating Integrated label holder Biconnect upper and lower terminals 35 sq. mm cage terminals with safety shutters Air channel for low temperature rise Clip on auxiliaries 10kA as per IEC 60898 (80-125A)

			Single pole	⊦ Neutral 240 V
1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60	D curve 6032 41 6032 42 6032 43 6032 44 6032 45 6032 46	6032 48 6032 50 6032 51 6032 52 6032 53 6032 54 6032 55 6032 56 6032 57	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63	Number of 17.5 mm modules 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

e e	
gle pole 240 / 415 V \sim	

Pack	Cat. nos.		Double pole	415 V \sim
1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60	D curve 6032 58 6032 59 6032 61 6032 61 6032 62 6049 61 6049 62 6049 64 6049 65 6049 66 6049 67 6049 68 6049 69	6032 65 6032 67 6032 68 6032 69 6032 71 6032 72 6032 73 6032 74 0064 75 0064 76	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125	Number of 17.5 mm modules 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 /40
1 /40
1 /40
1 /40
-,
1 /40
1 /40
1 /40
-,
1 /40
1 /40
1/40
-,
1 /40
1 /40
1 /40
1 /40
1 /40
1/9
410

	Triple pole 415 V \sim				
1/40 1/40 1/40 1/40 1/40 1/40 1/40 1/40	D curve 6032 75 6032 76 6032 77 6032 78 6032 79 6032 80 6049 71 6049 72 6049 74 6049 75 6049 76 6049 77 6049 78 6049 79	6032 82 6032 84 6032 85 6032 86 6032 87 6032 89 6032 90 6032 91 0064 95 0064 97	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125	Number of 17.5 mm modules 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	

For terminating aluminium cables in MCBs of 32 A and above, use of entry terminal 6034 48 is mandatory. $\,$

Common auxiliaries (p. 132)

For terminating aluminium cables in MCBs of 32 A and above, use of entry terminal 6034 48 is mandatory.

Lexic thermal magnetic MCBs up to 63 A

Lexic Isolators up to 80 A

6033 22

6033 04

Dimensions (p. 170) Technical data (p. 115-121)

10 kA ISI marked as per IS / IEC 60898-1 : 2002 15 kA conforming to IEC 60947 upto 25 A rating Integrated label holder Biconnect upper and lower terminals 35 sq. mm cage terminals with safety shutters Air channel for low temperature rise Clip on auxiliaries

F	ack	Cat. nos.		Triple pole +	Neutral 415 V \sim
1 1 1 1 1 1 1 1 1	/32 /32 /32 /32 /32 /32 /32 /32 /32 /32	D curve 6032 92 6032 93 6032 94 6032 95 6032 96 6032 97	6032 99 6033 01 6033 02 6033 03 6033 04 6033 05 6033 06 6033 07 6033 08	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63	Number of 17.5 mm modules 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

		5 V \sim		
1/32 1/32 1/32 1/32 1/32 1/32 1/32 1/32	D curve 6033 09 6033 10 6033 11 6033 12 6033 13 6033 14 6049 81 6049 82 6049 84 6049 85 6049 86 6049 87 6049 88 6049 89	C curve 6033 16 6033 18 6033 19 6033 20 6033 21 6033 23 6033 24 6033 25 0065 70 0065 71	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63 80 100 125	Number of 17.5 mm modules 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6

Conforms to IS 13947-3 (IEC 60947-3) Integrated label holder Biconnect upper and lower terminals 35 sq. mm cage terminals with safety shutters Clip on auxiliaries

Pack	Cat. nos.	Double pole	415 V√	
		Nominal rating (A)	Number of 17.5 mm modules	
1/ 5 /60	6040 01	32	2	
1/ 5 /60	6040 02	40	2	
1/5/60	6040 03	63	2	
1/ 5 /60	6040 05	100	2	

		Triple pole 415 V \sim		
		Nominal rating (A)	Number of 17.5 mm modules	
1 /40	6040 07	32	3	
1 /40	6040 08	40	3	
1 /40	6040 09	63	3	
1 /40	6040 11	100	3	
1 /40	6040 12	125	3	

		Four pole 415 V \sim		
		Nominal rating (A)	Number of 17.5 mm modules	
1 /32	6040 13	32	4	
1 /32	6040 14	40	4	
1 /32	6040 15	63	4	
1 /32	6040 17	100	4	
1 /32	6040 18	125	4	

For terminating aluminium cables in MCBs and Isolators of 32 A and above, use of entry terminal 6034 48 is mandatory.

For terminating aluminium cables in MCBs and Isolators of 32 A and above, use of entry terminal 6034 48 is mandatory.

la legrand

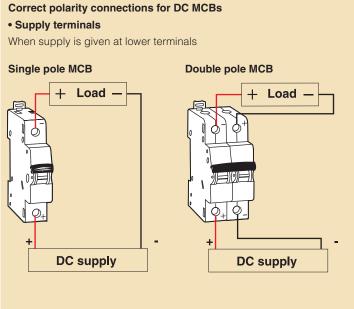
Lexic

MCBs for DC applications up to 63 A and railway MCBs

Dimensions (p. 170) Technical data (p. 115-121)

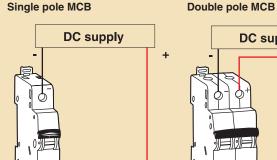
6 kA as per IS 13947 - 2 (IEC 60947 - 2) Integrated label holder Bi-connect upper and lower terminal 35 sq. mm cage terminals with safety shutters Air channel for low temperature rise Clip on auxiliaries

Pack	Cat. nos.	Single pole 2	250 V
1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120 1/10/120	C curve 6033 26 6033 27 6033 28 6033 29 6033 30 6033 31 6033 35 6033 35 6033 37 6033 38 6033 39 6033 40 6033 41 6033 42	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50 63	Number of 17.5 mm modules 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

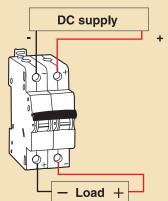

			Devicte seals	0501/
			Double pole	250 V
1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60 1/5/60	D curve 6033 43 6033 44 6033 45 6033 47 6033 48	C curve 6033 50 6033 52 6033 54 6033 55 6033 56 6033 57 6033 58	Nominal rating (A) 0.5 1 1.6 2 3 4 6 10 16 20 25 32 40 50	Number of 17.5 mm modules 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 /5/60		16033 59	63	1 2

Nominal rating
1/40 6033 61 1.0 1 1/40 6033 63 1.6 1 1/40 6033 64 2.5 1 1/40 6033 65 3.0 1
1/40 6033 64 2.5 1 1/40 6033 65 3.0 1
1/ 40 6033 66 4.0 1 1 1/ 40 6033 67 5.0 1
1/40 6033 68 10 1 1/40 6033 69 15 1
1/40 6033 70 20 1 1/40 6033 71 25 1 1/40 6033 72 30 1
1/40 6033 73 35 1 1/40 6033 74 40 1
1/40 6033 75 50 1 1/40 6033 76 60 1

For terminating aluminium cables in MCBs of 32 A and above, use of entry terminal 6034 48 is mandatory.

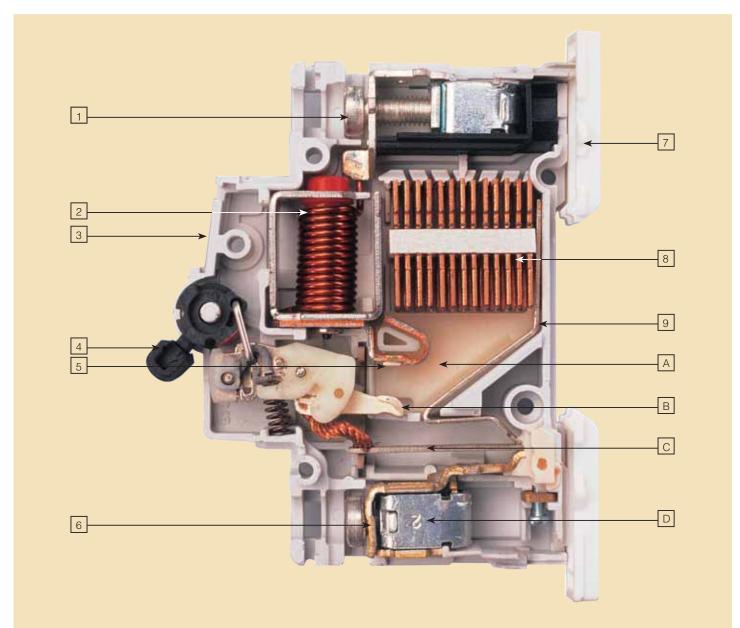

Lexic DC MCBs

■ Technical data



Supply terminals

When supply is given at upper terminals



Load

Lexic MCB cross sectional view of Lexic AC MCB

- 1 Combihead terminal screw
- 2 Solenoid
- 3 Label holder
- 4 Large two position dolly
- 5 Fixed contact
- 6 Bus bar terminal
- 7 Two position DIN rail clamp

- 8 Arc chute
- 9 Arc runner
- A Gas chamber
- B Moving contact
- C Bimetallic strip
- D `35 mm² box terminal

Lexic **AC MCBs and Isolators**

■ Technical data

Specification	IS / IEC 60898-1 : 2002
Number of poles	SP, DP, TP, FP, SPN and TPN
Characteristic	C and D
Breaking capacity	10 kA - 0.5 A to 125 A
	IS / IEC 60898-1 : 2002
	15 kA - 0.5 A to 25 A
	10 kA - 32 A to 63 A
	12.5 kA - 80 A to 125 A
	As per IS 13947 - 2 (IEC 60947 - 2)
Rated voltage	240 / 415 V AC
Current limitation class	3 as per EN 60898, IEC 60898
Frequency	50 to 60 Hz
Minimum operating voltage	12 V AC
Enclosure	Moulded self-extinguishing thermo set
	plastic in light bone grey colour.
Mounting position	Optional
Fixing	Snap fixing on standard DIN rail
	profile - 35 x 7.5
	Surface mounting with two screws
Maximum cable size	Top/Bottom - 0.5 to 63A - 1 to 35 mm ²
	for rigid cable - 80 to 125A - 1 to 70 mm ²
	Top/Bottom - 0.5 to 63A - 1 to 25 mm ²
A P 1	for flexible standard cable - 80 to 125A - 1 to 50 mm ²
Applied connection torque	2.5 Nm
Mechanical endurance	10,000 operation
Electrical endurance	10,000 operation
5	(cos Ø = 0.85 to 0.9)
Permissible ambient temp.	0.5 to 63A - Maximum + 55°C Minimum - 5°C
	80 to 125A Maximum + 75°C Minimum - 25°C

Note: Lexic AC MCBs are also suitable for DC operations 0.5 to 63A-60 V DC, Breaking capacity 1kA, 80 to 125A-80 V DC, Breaking capacity 4kA,

Power dissipated in Watt per pole at In

In A	0.5	1	1.6	2	3	4	6	10	16	20	25	32	40	50	63	80	100	125
Type C							1.2	1.53	1.85	1.98	2.4	3.1	4	4.5	5.5	8.5	10	15.6
Type D	2.2	2.2	2.2	2.2	2.4	2.5	1.2	1.53	1.85	1.98	2.4	3.1	4	4.5	5.5			
Permitted	3	3	3	3	3	3	3	3	3.5	4.5	4.5	6	7.5	9	13			
limit as per																		
IEC 60000																		

Derating according to ambient temperature

In at 30°C	Ambient ter	nperature					
	0° C	10° C	20° c	30° C	40° C	50° C	60° C
0.5	0.55	0.53	0.51	0.5	0.48	0.46	0.45
1	1.1	1.07	1.03	1	0.97	0.93	0.9
1.6	1.8	1.7	1.65	1.6	1.55	1.49	1.44
2	2.2	2.1	2.06	2	1.94	1.86	1.8
3	3.3	3.2	3.1	3	2.9	2.8	2.6
4	4.4	4.28	4.12	4	3.88	3.72	3.6
6	6.6	6.4	6.2	6	5.8	5.5	5.4
10	11	10.7	10.3	10	9.7	9.3	9
16	18	17.3	16.6	16	15.4	14.7	14.1
20	22.4	21.6	20.8	20	19.2	18.4	17.6
25	28.3	27.2	26	25	24	22.7	21.7
32	36.2	34.9	33.3	32	30.7	29.1	27.8
40	46	44	42	40	38	36	34
50	57.5	55	52.5	50	47.5	45	42.5
63	73.1	69.9	66.1	63	59.8	56.1	52.9
80	92	88	84	80	76	72	69
100	114	110	105	100	95	90	86
125	141	137	131	125	119	113	108

■ Lexic DC MCBs

Specification	IS 13947-2 ; IEC 60947-2
No. of poles	SP And DP
Breaking capacity	6 kA at 250 V DC
	As per IS 13947-2; IEC 60947-2
Rated Voltage	250 V DC
Minimum Operating Voltage	12 V DC
Permissible ambient temperature	- 5° C to + 55° C

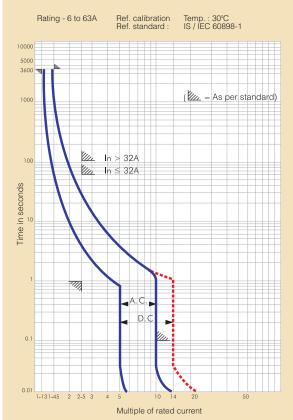
■ Lexic Isolators

Specification	As per IS 13947-3 and IEC 60947-3
Rating and no. of poles	DP - 32, 40, 63
	TP - 32, 40, 63, 80
	FP - 32, 40, 63, 80
Rated operational voltage and frequency	415 V, 50/60 Hz
Utilization category	AC 22 (for resistive & moderate inductive load)
Insulation voltage Ui	660 V AC
Impulse voltage Uimp	6 kV (1.2 / 50 μ s surge)
Short time with stand capacity	Icw = 1000 A for 0.3 second
Short circuit making capacity Im	1000 A
Endurance	Electrical - 10000 operation (cos Ø 0.85 to .09 lag)
	Mechanical - 10000 operation
Terminals	Top - 1 to 35 mm² copper / aluminium rigid cable, biconnect terminal, 14 mm deep terminal shutter Bottom - 1 to 35 mm² copper / aluminium rigid cable, biconnect terminal, 14 mm deep with terminal shutter

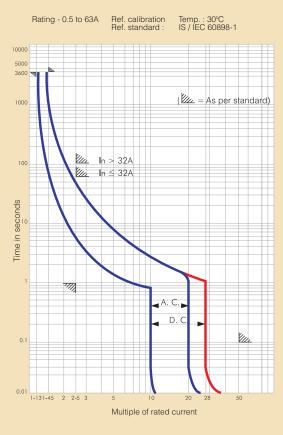
Choice of Lexic MCBs for capacitor banks

This table shows the rated current of Lexic MCBs to be used when controlling capacitor banks so as to guarantee its function and shortcircuit protection.

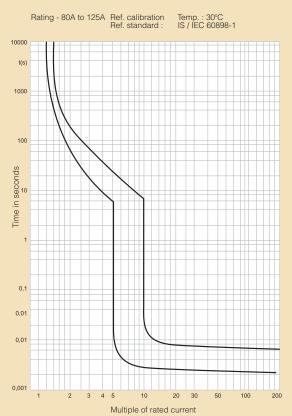
Overload protection is not necessary since these installations cannot be overloaded.


This data refers to shortcircuit protection in absence of harmonics or heavy transitory currents.

	C chara	cteristic	ting in amps D characteristic					
Power of capacitor	Single phase	Three phase	Single phase	Three phase				
ank in KVAR	240 V	415 V	240 V	415 V				
0.5	10	6	3	11				
11	20	6	6	2				
1.5	32 40	10 16	10 10	4				
2.5 3	50	16	16	4				
3.5	63	20	16	6				
4	63	25	16	6				
4.5		25	20	10				
5		32	20	10				
5.5		32	25	10				
6 6.5		32 40	25 25	10 10				
7		40	32	10				
7.5		50	32	16				
8		50	32	16				
8.5		50	40	16				
9		50	40	16				
9.5		63	40	16				
10	00	63	40	16				
10.5 11	80 80	63	60 50	16 16				
11.5	80		50	16				
12	80		50	20				
12.5	80		50	20				
13	100		63	20				
13.5	100		63	20				
14	100		63	20				
14.5	100		63	25				
15	100		63	25				
15.5 16	100 100			25 25				
16.5	125			25				
17	125			25				
17.5	125			25				
18	125			32				
18.5	125			32				
19	125			32				
19.5	125			32				
20	125			32				
20.5				32				
21				32				
21.5 22		***		32 32				
22.5				32				
23				32				
23.5				40				
24				40				
24.5 25				40				
25				40				
25.5				40				
26				40				
26.5		***	***	40				
27 27.5				40				
28				40				
28.5				40				
29				50				
29.5				50				
30				50				
30.5		80		50				
31 31.5		80 80		50				
31.5		80		50 50				
32.5		80		50				
33		80		50				
33.5		80		50				
34		80		50				
34.5		80		50				
35		80		50				
35.5 36		80	***	50 50				
36.5		80 80		63				
37		80		63				
37.5		80		63				
38		80		63				
38.5		80		63				
39		100		63				
39.5		100		63				
40		100		63				
40.5		100		63				
41		100		63				
41.5		100		63				
42 42.5		100		63				
42.5		100 100		63 63				
43.5	***	100	***	63				
44		100		63				
44.5		100		63				
45		100		63				
45.5 to 48		100						
48.5 to 60		125						

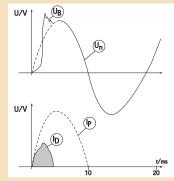


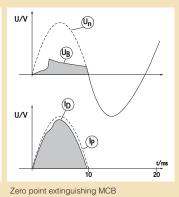
■ Technical data


Time current characteristics for C curve

Time current characteristics for D curve

Time current characteristics for C curve


Tripping characteristics


Standards has established different tripping characteristics depending on minimum and maximum values of magnetic trip.

Lexic MCB	Type	lm1	lm2	Typical application
0.5 A to 63 A	D	10 ln	20 In	Protection of cable and appliance which
				has very high starting currents.
6 A to 125 A	С	5 In	10 ln	Protection of cable used for lighting load,
				power load and induction loads with high
				starting current.

lm1 - hold limit lm2 - Trip limit

Lexic MCBs versus zero point extinguishing MCBs

Current limiting Lexic MCB

Un = Mains Voltage UB = Arc Voltage ID = Let-through short circuit current IP = Prospective short circuit current

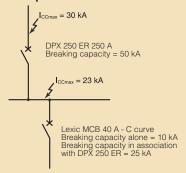
■ Technical data

Association of protection devices

Association is the technique by which the breaking capacity of a MCB is increased by coordinating it with another protection device, placed upstream. This coordination makes it possible to use a protection device with a breaking capacity which is lower than the maximum prospective short-circuit current at its installation point

The breaking capacity of a protection device must be at least equal to the maximum short-circuit which may occur at the point at which this device is installed.

In exceptional cases, the breaking capacity may be lower than the maximum prospective short-circuit, as long as: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{$


- It is associated with a device upstream which has the necessary breaking capacity at its own installation point
- The downstream device and the trunking being protected can withstand the power limited by the association of the devices.

Association therefore leads to substantial savings.

The association values given in the tables on the following pages are based on laboratory tests carried out in accordance with IEC 60947-2.

Note: In the case of single phase circuits (protected by P+N or 2P MCBs) in a 415 V AC supply, supplied upstream by a 3-phase circuit, it is advisable to use the association tables for 230 V.

Example of association

3-level association

An association may be created on three levels if one of the conditions below is met.

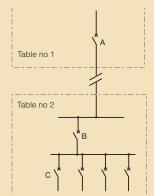
• The upstream device A must have an adequate breaking capacity at its installation point. Devices B and C are associated with device A. Simply check that the association values B + A and C + A have the necessary breaking capacity.

In this case, there is no need to check the association between devices B and C.

 The association is made between successive devices: Upstream device A, which has an adequate breaking capacity at its installation point, device C is associated with device B which is in turn associated with device A.

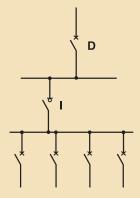
Simply check that the association values C+B and B+A have the necessary breaking capacity. In this case, there is no need to check the association between devices A and C.

* B


Association in IT connection systems

The values given in the tables should only be used for TN and TT systems.

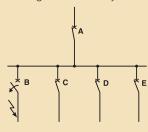
Although this practice is not widely used, these values may also be used for installations with IT systems. It is therefore advisable to check that each protection device, on its own, can break, on a single pole, the maximum double fault current at the point in question.


Association between distribution boards

Association applies to devices installed in the same distribution board as well as in different boards. It is therefore generally possible to benefit from the advantages of the association between devices located, for example, in a main distribution board and in a secondary board

MCB - switch association

The switches must be systematically protected by an MCB placed upstream. There is considered to be protection against overloads if the rating of switch I is at least equal to that of the upstream MCB, D. If this is not the case, the thermal stresses (devices and conductors) must be checked. The tables on the following pages give the breaking capacity limits of the MCB - switch associations.

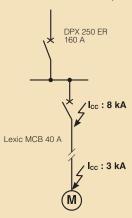


Discrimination of protection devices

Discrimination is a technique which consists of coordinating the protection in such a way that a fault on one circuit only trips the protection placed at the head of that circuit, thus avoiding rendering the remainder of the installation inoperative. Discrimination improves continuity of service and safety of the installation

Discrimination rules are set by the regulations concerning public buildings and for safety installations in general.

Discrimination between A and B is said to be "total" if it is provided up to the value of the maximum prospective short-circuit at the point at which B is installed.


By extension, in the tables on the following pages, total discrimination, indicated by T, means that there is discrimination up to the breaking capacity of device B.

Discrimination between A and B is said to be "partial" in the other cases.

The discrimination limit (given in the following tables) is therefore defined. This gives the short-circuit current value below which only MCB B will open and above which MCB A will also open.

There are a number of techniques for providing discrimination:

- Current discrimination, used for terminal circuits which have low short-circuits.
- Time discrimination, provided by a delay on tripping the upstream MCB
- Logical discrimination, a variant of time discrimination, used on electronic MCBs via a special link between the devices.

Since almost all faults occur during use, partial discrimination may be adequate if the discrimination limit is higher than the value of the maximum short-circuit which may occur at the point of use (or at the end of the trunking). This is referred to as "operating discrimination". This technique is very often adequate, more economical and less restricting in terms of implementation.

The discrimination limit for the association DPX 250 ER (160 A) with Lexic MCB 40 A (C curve) is 6 kA. Since the prospective ISC at the point of installation is 8 kA, the discrimination is not total. However, there is discrimination at the point of use at which the prospective short-circuit is only 3 kA.

Current discrimination

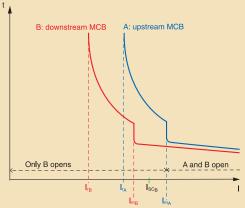
This technique is based on the offset of the intensity of the tripping curves of the upstream and downstream MCBs. It is checked by comparing these curves and checking that they do not overlap. It applies for the overload zone and the short-circuit zone, and the further apart the ratings of the devices, the better the discrimination.

On overloads

To have discrimination in the overload zone, the ratio of the setting currents (Ir) must be at least 2.

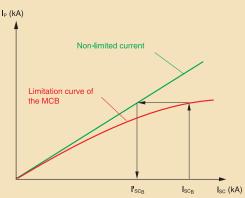
On short-circuits

To have discrimination in the short circuit zone, the ratio of the magnetic setting currents (Im) must be at least 1.5.


The discrimination limit is then equal to the magnetic release current ImA of the upstream MCB. The discrimination is then total as long as IscB is less than ImA.

Current discrimination is therefore very suitable for terminal circuits where the short-circuits are relatively weak.

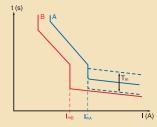
In other cases, time discrimination may be used together with current discrimination.


Current discrimination

The discrimination is total for Isca

I_{SCR}: maximum short-circuit at the point at which MCB B is installed

When the downstream MCB B is a limiting device, the short-circuit current is limited in terms of time and amplitude. The discrimination is therefore total if the limited current IscB, which device B allows to pass, is lower than the tripping current of device A



 $I_{\mbox{\tiny SCB}}$: prospective short-circuit at the point at which the device is installed

I'scB: short-circuit limited by device B

Time discrimination

This technique is based on the offset of the times of the tripping curves of the MCBs in series. It is checked by comparing the curves and is used for discrimination in the short-circuit zone. It is also used in addition to current discrimination in order to obtain discrimination beyond the magnetic setting current of the upstream MCB (ImA).

The following is necessary:

- It must be possible to set a time delay on the upstream MCB
- The upstream MCB must be able to withstand the short-circuit current and its effects for the whole period of the time delay
- The trunking through which this current passes must be able to withstand the thermal stresses (I²t).

The non-tripping time of the upstream

device must be longer than the breaking time (including any time delay) of the downstream device.

DPX MCBs have a number of time delay setting positions for creating discrimination with a number of stages.

■ Technical data

Association and co-ordination of MCCBs and MCBs (in kA) In 3 phase networks + N 400/415 V according to IEC 60947-2

		Me	CCBs Upstr	eam							
		DPX-E 125	DPX 125	DPX/ DPX-H 160		DPX 250 ER		DPX/H	I/L 250	DPX/H/L 630	
MCBs downstream		16 to 125A	16 to 125A	25 to 160A	63A 160A 250A		160A	250A	250 to 400A		
	0.5 to 20 A	16	25	25	25	25	25	25	25	25	
	25A	16	25	25	25	25	25	25	25	25	
	32A	16	25	25	25	25	25	25	25	25	
	40A	16	25	25	25	25	25	25	20	20	
Lexic - 10 kA MCB	50A	16	25	20	25	20	20	20	15	15	
	63A	16	25	15		15	15	15	15	15	
	80A	16	20	20	20	20	20	20	20	20	
	100A	16	20	20	20	20	20	20	20	20	
	125A			15	15	15	15	15	15	15	

In 3 phase networks + N 230/240 V according to IEC 60947-2

		МС	CCBs upstre	eam								
		DPX-E 125	DPX 125	DPX/ DPX-H 160		DPX 250 ER		DPX/H	I/L 250	DPX/H/L 250		
MCBs downstream		16 to 125A	16 to 125A	25 to 160A	63A	160A	250A	160A	250A	250 to 400A		
	0.5 to 20 A	22	35	35	50	50	50	50	50	50		
	32 & 40A	22	35	35	50	50	50	50	50	50		
Lexic - 10 kA MCB	50A	16	25	25	36	36	36	36	30	30		
	63A	16	25	15	25	30	30	30	30	30		
	80A	16	25	25	25	25	25	25	25	25		
	100A	16	25	25	25	25	25	25	25	25		
	125A			25	25	25	25	25	25	25		

TT or TNS neutral earthing systems: For a 230 / 400 V supply in order to determine the breaking capacity of a 2 P MCB used as L + N (230 V) downstream a 2 P or 4 P circuit breaker use values indicated in the table for 230/240 V

Selectivity tables MCBs/MCCBs

,																	
			DPX														
		DPX 125				DPX 160			DPX 250 ER				DPX/H/L 250				
MCBs downstream	1	40 A	63 A	100 A	125 A	63 A	100 A	160 A	63 A	100 A	160 A	250 A	63 A	100 A	160 A	250 A	
	0.5 to 4 A	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	
	6 A	6 000	6 000	Т	Т	Т	Т	Т	Т	Т	Т	Т	6 000	Т	Т	Т	
	10 A	5 000	5 000	7 500	7 500	5 000	Т	Т	5 000	Т	Т	Т	5 000	Т	Т	Т	
	13 A	4 000	4 000	6 000	6 000	5 000	Т	Т	5 000	Т	Т	Т	4 000	Т	Т	Т	
	16 A	4 000	4 000	6 000	6 000	4 000	Т	Т	4000	Т	Т	Т	4 000	Т	Т	Т	
Lexic - 10 kA	20 A	3 000	3 000	5 000	5 000	4 000	8 000	Т	4 000	8 000	Т	Т	4 000	8 000	Т	Т	
MCB	25 A	3 000	3 000	4 500	4 500	3 000	6 000	8 500	3 000	6 000	8 500	Т	3 000	6 000	Т	Т	
	32 A		2 000	4 000	4 000	2 000	5 000	7 000	2000	5 000	7 000	Т	2 000	5 000	Т	Т	
	40 A		2 000	3 000	3 000	2 000	4 000	6 000	2 000	4 000	6 000	Т	2 000	5 000	Т	Т	
	50 A			3 000	3 000		4 000	5 500		4 000	5 500	7 000		4 000	8 000	Т	
	63 A			3 000	3 000		3 000	5 000		3 000	5 000	6 000		4 000	8 000	Т	
	80 A				2000		2000	5000		2500	5000	6000		3000	8000	Т	
	100A							4000			4000	5000			7500	Т	
	125A							2000			2000	3000			3000	8000	
T						.=			'			'					

T: total selection, up to downstream circuit breaker breaking capacity according to IEC 60947-2

Selectivity limits Fuses / MCBs

		upstream fuse									
MCBs do	wnetroom	gG type									
WCDS GO	32A	40a	50A	63A	80A	100A	125A	160A			
	0.5 to 6A	1 600	1 900	2 500	4 000	4 600	11 000	25 000	Т		
	8A	1 600	1 900	2 500	4 000	4 600	11 000	25 000	Т		
	10A		1 600	2 200	3 200	3 600	7 000	11 000	20 000		
	13A		1 600	2 200	3 200	3 600	7 000	11 000	20 000		
Lexic	16A		1 400	1 800	2 600	3 000	5 600	8 000	15 000		
10 kA	20A		1 200	1 500	2 200	2 500	4 600	6 300	10 000		
C curve	25A			1 300	2 000	2 200	4 100	5 500	8 000		
C curve	32A			1 200	1 700	1 900	3 500	4 500	7 000		
	40A					1 700	3 000	4 000	5 000		
	50A					1 600	2 600	3 500	4 500		
	63A						2 400	3 300	4 500		
	A08						3000	6000	8000		
	100A							4000	5000		
	125A								4000		

T : Total selectivity up to breaking capacity of downstream circuit breaker according to $\mbox{EN }60947\mbox{-}2$

⁽¹⁾ The magnetic threshold of the upstream circuit breaker must be higher than the magnetic threshold of the downstream circuit breaker

DPX/H/L 630 DPX/H/L DPX/H/L Electronic 1250 1600 160 & 400 A 630A 500 to 1250A 800 to 1600A 25 25 25 25 25 25 20 20 25 25 15 15 20 20 15 15 15 15 12.5 12.5 15 15 12.5 12.5 20 15 15 12.5 15 12.5 20 15 15 12.5 12.5 12.5

DPX/H Elect		DPX/H/L 1250	DPX/H/L 1600	
160 & 400 A	630A	500 to 1250A	800 to 1600A	
50	50	50	50	
50	50	50	50	
30	25	25	25	
30	25	25	25	
25	25	25	16	
25	25	25	16	
25	25	25	16	

Association of fuses and Lexic MCBs

In 3 phase networks (+ N) 400/415 V according to IEC 60947-2

MCBs downstream	Fuses upstream gG type					
WODS downstream	WICDS downstream			63 to 160 A		
	0.5 A to 40 A	100		100		
	50 to 63 A	-		100		
Lexic 10kA		100 A	125	Α	160 A	
LEXIC TURA	80 A	100	10	0	100	
	100 A	-	10	0	100	
	125 A	-	-		100	

Association of fuses and Lexic MCBs

In 3 phase networks (+ N) 230/240 V according to IEC 60947-2

MCBs downstream		Fu	ses u gG t		am
MODS downstream		20 to 50 A		63	3 to 160 A
	0.5 A to 40 A	100		100	
	50 A to 63 A	- ,		100	
Lexic 10kA		100 A	125	Α	160 A
ECKIO TORA	80 A	100	100		100
	100 A		10	0	100
	125 A				100

DPX															
DPX/H/L 630 elec.			DPX/H/L 630			DPX/H/L 1250					DPX/H 1600 elec.				
250 A	320 A	400A	160 A	250 A	400 A	630 A	500 A	630 A	800 A	1 000 A	1 250 A	630 A	800 A	1 250 A	1 600 A
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т

■ Selection chart*

Lexic MCBs (10 kA) and RCBOs 3 phase motor application

Motor	KW	MCB r	ating (A)
H.P.		Star Delta	DOL
1	0.75	-	1.6 A
1.5	1.10	-	2 A
2	1.50	-	3 A
3	2.25	-	4 A
4	3.00	-	10 A
5	3.75	10 A	10 A
6	4.50	10 A	10 A
7.5	5.50	16 A	16 A
10	7.50	16 A	20 A
12.5	9.30	20 A	25 A
15	11.00	25 A	32 A
17.5	13.00	25 A	32 A
20	15.00	40 A	40 A
25	18.50	40 A	50 A
30	22.50	50 A	63 A
35	26.00	63 A	-

Selectivity limits MCB / MCB (average values in Amp.)

		MCE	3s ups	tream									
			Lexic 10 kA										
MCR2 do	wnstream	6A	10A	16A	20A	25A	32A	40A	50A	63A	80A	100A	125A
	0.5 to 4A	45	75	120	150	187	240	300	375	472	480	600	750
	2A	45	75	120	150	187	240	300	375	472	480	600	750
	3A	45	75	120	150	187	240	300	375	472	480	600	750
	6A	75	120	150	187	240	300	375	472	480	480	600	750
	10A			120	150	187	240	300	375	472	480	600	750
Lexic	16A				150	187	240	300	375	472	480	600	750
10 kA	20A					187	240	300	375	472	480	600	750
IU KA	25A						240	300	375	472	480	600	750
	32A							300	375	472	480	600	750
	40A								375	472	480	600	750
	50A									472	480	600	750
	63A										480	600	750
	80A											600	750
	100A												750
	125A												

⁽¹⁾ The MCB downstream must always have a magnetic threshold and a nominal rating inferior to upstream MCBs

For MCB/RCBO ratings :

Single phase = P = VI

Three phase = $P = \sqrt{3} \text{ VI Cos } \phi = 1.732 \text{ x VI x } 0.8$

Note: One lighting circuit can have upto 800 W or upto 10 points.
One power circuit can have upto 3000 W or upto 2 power points.

The data given above is only for guidance.
The exact rating must be selected only after considering the motor characteristics.

LEXIC RCDs

Lexic RCCBs upto 63 A

Protection against earth leakage

> Type AC ~

Sensitive to residual alternating currents Use: Standard applications

> Type A-S 🖾 🛐

Sensitive to residual alternating currents with DC components

Delayed trip for discrimination with other RCDs Use: Special applications like rectifier bridge, etc.

> Type Hpi া 🅸

Enhanced immunity to unwanted tripping in environments with disturbances. Detects faults with DC components Use: Special applications like DG sets, computers, printers, thyristors, etc.

0086 08

6021 31

Dimensions (p. 170) Technical data (p. 126-131)

Protection against earth leakage ISI marked as per IS 12640 (part 1) - 2008 Conforms to IEC 61008-1 Integrated label holder Bi-connect terminal 35 mm. cage terminals with safety shutters Clip on auxiliaries

Pack	Cat. nos.	Type AC		
		Double pole 2	30 V ↑	
		30 mA		
		Nominal rating	Number of	
1 /5/60 1 /5/60 1 /5/60	0086 06 0086 07 0086 08	(A) 25 40 63	17.5 mm modules 2 2 2	
		100 mA		
1 /5/60 1 /5/60 1 /5/60	0086 09 0086 10 0086 11	25 40 63	2 2 2	
		300 mA		- r [-2 -1 <u>1</u> 3 <u>1</u>
1 /5/60 1 /5/60 1 /5/60	0086 12 0086 13 0086 14	25 40 63	2 2 2	
		Four pole 400	${f V}{\sim}$	2 4
		30 mA		
1/32 1/32 1/32	6021 26 6021 27 6021 28	25 40 63	4 4 4	
, -		100 mA		
1 /32 1 /32 1 /32	6021 29 6021 30 6021 31	25 40 63	4 4 4	_ <u>1 31 51 NI</u>
		300 mA		
1/32 1/32 1/32	6021 32 6021 33 6021 34	25 40 63	4 4 4	2 4 6 N

Common auxiliaries (p. 132)

For terminating aluminium cables in RCCBs of 32 A and above, use of entry terminal 6034 48 is mandatory.

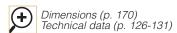
Lexic RCCBs 63A

Lexic RCCBs upto 63 A

6021 72

6021 67

Dimensions (p. 170) Technical data (p. 126-131)


Protection against earth leakage Conform to new standards IEC 61008-1 Integrated label holder Bi-connect lower terminal Terminals with safety shutters Clip on auxiliaries

1/32 6021 67

Onp on a	27(11)(21)(00)						
Pack	Cat. nos.	Type A-S					
		Double pole -	230 V \sim				
		300 mA discriminating					
		Nominal rating (A)	Number of 17.5 mm modules				
1 /5/60	6021 72	63	2				
		Four pole - 400 V \sim neutral on right					

63

300 mA discriminating

Protection against earth leakage
Enhanced immunity to unwanted tripping in environments with
disturbances eg. DG sets, Computers, Printers, etc.
Detects faults with DC components eg. Thyristors, Trio, etc.
Conforms to IEC 61008-1
Integrated label holder
Bi-connect lower terminals
Terminals with safety shutters
Clip on auxiliaries
Minimum operating temperature - 25° C

Pack	Cat. nos.	Type Hpi					
		Double pole 2	30 V \sim				
		30 mA					
		Nominal rating (A)	Number of 17.5 mm modules				
1 /5/60	6021 68	25	2				
1 /5/60	6021 69	40	2				
1 /5/60	6021 70	63	2				
		Four pole 400	$oldsymbol{V}\sim$				
		30 mA					
1 /32	6021 64	25	4				
1 /32	6021 65	40	4				
1 /32	6021 66	63	4				

Most compact range of MCCBs in India

DPX MCCBs (p. 56-69)

For terminating aluminium cables in RCCBs of 32 A and above, use of entry terminal 6034 48 is mandatory.

Lexic RCBOs up to 63 A

6033 99

Dimensions (p. 170) Technical data (p. 126-131)

3 in 1 protection: Earth leakage, overload and short circuit 10 kA ISI marked as per IS 12640 (part 2) - 2008 Conforms to IEC 61009 - 1 Integrated label holder Bi-connect terminal. 35 sq. mm cage terminals with safety shutters Clip on auxiliaries

Pack	Cat. nos.	Type AC			Pack	Cat. nos.	Type AC			
		Double pole 2	240/415 V \sim				Four pole 240/415 V \sim			
		30 mA					30 mA			
		Nominal rating (A)	Number of 17.5 mm modules				Nominal rating (A)	Number of 17.5 mm modules		
1 /32	6034 14	6	4		1 /16	6033 95	16	8		
1 /32	6034 16 6033 77	10	4 4		1 /16 1 /16	6033 97 6033 98	25 32	8		
1 /32 1 /32	6033 77	16 25	4		1 /16 1 /16	6033 99	32 40	8 8		
1 /32	6033 80	32	4		1 /16	6034 00	63	8		
1 /32	6033 81	40	4							
1 /32	6033 82	63	4				100 mA			
		100 mA			1 /16	6034 01	16	8		
1 /32	6034 24	6	4		1 /16	6034 03	25	8		
1/32	6034 26	10	4		1 /16	6034 04	32	8 8 8 8		
1 /32 1 /32	6033 83 6033 85	16 25	4 4		1 /16	6034 05	40	8		
1/32 1/32	6033 86	32	4		1 /16	6034 06	63	8		
1 /32	6033 87	40	4					41.01.51.51		
1 /32	6033 88	63	4	41.01			300 mA	1 ± 3 ± 5 ± 7 ± 1 = 1 = 1 = 1 = 1		
		300 mA		¹¥ ³¥ <u> </u>	1 /16	6034 07	16	0 4441		
1 /32	6033 89	16	4	<i>ff</i> / -	1 /16 1 /16	6034 09 6034 10	25 32	8 7 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
1 /32	6033 91	25	4 4	5 5 ↓↓Ţ	1 /16 1 /16	6034 11	32 40	8		
1/32	6033 92	32	4	<u> </u>	1 /16	6034 12	63	8 2 4 6 8		
1 /32 1 /32	6033 93	40 63	4 4	2 4						
1/32	6033 94	03	4							

Lexic SPN RCB0s upto 40 A

0078 63

Dimensions (p. 170) Technical data (p. 126-131)

3 in 1 protection : Earth leakage, overload and short circuit 6 kA as per IEC 60947-2 Integrated label holder Terminals with safety shutters Compact 2 modules Clips on auxiliaries Neutral on left

Pack	Cat. nos.	Type AC	
		SPN 230 V \sim	
		30 mA	
		Nominal rating (A)	Number of 17.5 mm modules
1 /5/60	0078 60	6	2
1 /5/60	0078 61	10	2
1 /5/60	0078 63	16	2 2 2 2 2 2
1 /5/60	0078 64	20	2
1 /5/60	0078 65	25	2
1 /5/60	0078 66	32	2
1 /5/60	0078 67	40	2
		300 mA	
1 /5/60	0078 71	6	2
1 /5/60	0078 72	10	2
1 /5/60	0078 74	16	2
1 /5/60	0078 75	20	2
1 /5/60	0078 76	25	2 2 2 2 2 2
1 /5/60	0078 77	32	2
1 /5/60	0078 78	40	1 2

0085 67

3 in 1 protection: Earth leakage, overload and short circuit 6 kA as per IEC 60947-2
Enhanced immunity to unwanted tripping in environments with disturbances eg. Diesels, Computers, Printers, etc.
Detects faults with DC components eg. thyristors, trio, etc.
Integrated label holder
Terminals with safety shutters
Compact 2 modules
Clips on auxiliaries
Minimum operating temperature -25° C
Neutral on left

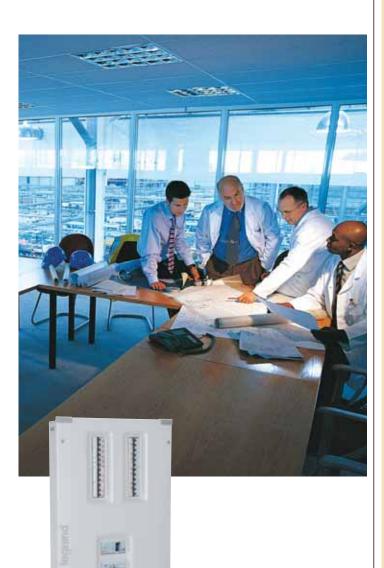
Pack	Cat. nos.	Type Hpi	
		SPN 230 V \sim	
		30 mA	
		Nominal rating (A)	Number of 17.5 mm modules
1 /5/60	0085 67	25	2
1 /5/60	0085 68	32	2
1/5/60	0085 69	40	2

Lexic RCDS

Technical data for Lexic RCDs

			RCCB	
		Type AC	Type A-S	
Specification		IS 12640 (part 1) 2008 IEC 61008 - 1	IEC 61008 - 1 NFC 61 - 150 EN 61008 - 1	
No. of modules	- Double pole	2	2	
No. of modules	- Four pole	4	4	
Electrical characteristics				
Nominal rating In (A)	- Double pole	25, 40, 63	63	
	- Four pole	25, 40, 63	63	
Rated sensitivity (mA)	- Double pole	30, 100, 300	300	
, ,	- Four pole	30, 100, 300	300	
Rated frequency (Hz)	·	50 / 60	50 / 60	
Rated operating voltage Ue (V A	(C) - Double pole	230	230	
	- Four pole	230 / 415	400	
Minimum operating voltage (V A		12	12	
Minimum operating voltage for		12	12	
	- Double pole	170	170	
	- Four pole	196	196	
Rated insulation voltage Ui (V A		250	250	
nated insulation voltage of (V A	- Four pole	500	500	
Dated impulse with stand valte			6	
Rated impulse withstand volta	ige Oimp (kv)	6	· ·	
Breaking capacity			As per IS 12640 (part 1) 2008, IEC 61008 - 1	
Rated making & breaking capac				
	- Up to 40 A	500 A	-	
	- From 63 A and above	10 x In	630 A	
Rated residual making & breaking				
	- Up to 40 A	1000 A	-	
	- From 63 A and above	1000 A	1000 A	
Rated conditional short circuit c	urrent (Inc)	10000 A	10000 A	
Rated conditional residual short	circuit current (I∆c)	10000 A	10000 A	
Rated service short circuit capa	` '	-	-	
Rated short circuit capacity (Icn		-	-	
Operating temperature (°C)	,	-5 to 55	- 5 to 55	
Endurance (0.C cycle)	- Mechanical	20,000	20,000	
Endurance (o.o oyole)	- On load at in X cos φ 0.9	10,000	10,000	
	- Via test button	2,000	2,000	
		· · · · · · · · · · · · · · · · · · ·		
-	- By fault current (sensitivity)	2,000	2,000	
Testing		By pressing test button grey dolly will come to OFF position It is recommended to test RCCB once a month	By pressing test button grey dolly will come to OFF position It is recommended to test RCCB once a month	
Fault indication	- Earth leakage	Grey dolly will come to	Grey dolly will come to	
	5	OFF position	OFF position	
	- Overload and shortcut	-	-	
Resetting		Switch on grey dolly	Switch on grey dolly	
Terminals	- Rigid	1 - 35 sq. mm	1 - 35 sq. mm	
	- Flexible	1 - 25 sq. mm	1 - 25 sq. mm	
Type of protection				
Earth leakage		•	•	
Overload		-	-	
Short circuit		-	-	
Add on electrical access	ories*			
Auxiliary		•	•	
, wantar y				
Fault signaling		•	•	
Fault signaling Shunt trip		•	•	

^{* -} Accessories are mounted on the left hand side of the product. At a time a maximum of three accessories can be mounted. **O - Between phase and neutral**



			RCBO	
	Type Hpi	Type AC	Type AC - 2 modules	Type Hpi
	NFC 61 - 150	IS 12640 (part 2) 2008	NFC 61 - 410	NFC 61 - 410
	EN 61008 - 1	IEC 61009 - 1	EN 61009 - 1	EN 61009 - 1
		IEC 61009 - 1		
	IEC 61008 - 1		IEC 61009 - 1	IEC 61009 - 1
	2	4	2	2
	4	8	-	-
	25, 40, 63	6, 10, 16, 25, 32, 40, 63	6, 10, 16, 20, 25, 32, 40	25, 32, 40
	25, 40, 63	16, 25, 32, 40, 63	_	_
	30	30, 100, 300	30, 300	30
	30		-	-
		30, 100, 300		
	50 / 60	50 / 60	50 / 60	50 / 60
	230	230 / 415	230	230
	400	415	-	-
	12	12	12	12
	170	170	170	170
	196	196	-	-
	250	500	250	250
	500	500	-	
	6	6	6	6
	0		-	
		A	s per IS 12640 (part 2) 2008, IEC 61009	- 1
	500 A	10000 A	6000 A	6000 A
	630 A	10000 A	-	-
	1000 A	10000 A	3000 A	3000 A
	1000 A	10000 A	-	-
	10000 A	-	-	-
	10000 A	-	-	-
	-	7500 A	6000 A	6000 A
	-	10000 A	6000 A	6000 A
	- 25 to 55	- 5 to 55	- 5 to 55	- 25 to 55
	20,000	20,000	20,000	20,000
	10,000	10,000	10,000	10,000
	2,000	1,000	1,000	1,000
	2,000	1,000	1,000	1,000
	·		·	,
	By pressing test button,	By pressing test button, black	By pressing test button,	By pressing test button,
	grey dolly will come to	and blue dolly will come to	black dolly will come to	black dolly will come to
	OFF position	OFF position	OFF position	OFF position
	It is recommended to test	It is recommended to test	It is recommended to test	It is recommended to test
	RCCB once a month	RCBO once a month	RCBO once a month	RCBO once a month
	Grey dolly will come to	Black & blue dolly will come to	Black dolly will come to	Black dolly will come to
			*	the contract of the contract o
	OFF position	OFF position	OFF position & blue indicator	OFF position & blue indicator
			will appear on front face window	will appear on front face window
	-	Black dolly will come to	Black dolly will come to	Black dolly will come to
		OFF position	OFF position	OFF position
	Switch on grey dolly	Switch on blue dolly followed	Switch on black dolly	Switch on black dolly
		by black dolly		
	1 - 35 sq. mm	1 - 35 sq. mm	0.75 - 16 sq. mm	0.75 - 16 sq. mm
	1 - 25 sq. mm	1 - 25 sq. mm	0.75 - 10 sq. mm	0.75 - 10 sq. mm
	20 0411	, 20 Sq	20 10 0q. 11111	2.1.0 1.0 0q. 111111
	•	•	•	•
	-	•	•	•
	-	•	•	•
	•	•	•	•
	•	•	•	•
	•	•	•	•
		•	•	•

Ekinoxe™

Ekinoxe™ MCCB's Distribution Boards

(refer pg. 181)

Lexic RCDs

■ Technical data

Short-circuit withstanding capacity of RCCBs (in kA)

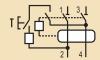
RCD downst	ream	Lexic MCB upstream		
	16 A	10		
	25 A	10		
2 P	40 A	10		
	63 A	10		
	25 A	10		
4 P	40 A	10		
	63 A	10		

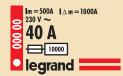
Marking example :

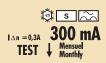
Type A

Type AC

Type A-S







according to IEC 61008-1 and IEC 61009-1

Note: We offer Type AC, Type A-S and Type Hpi RCDs

Lexic RCDs (continued)

■ Technical data

Nature and consequences of electrical risks Direct and indirect contact

All electrical risks for people are the result of direct or indirect contact. What are these contacts? And how can we protect ourselves against them?

All the answers appear in the following section.

Electrical risks do not just concern people: these risks - especially fire affect installations as well. A 500 mA current, for example, flowing through combustible material is sufficient to ignite such material after a certain time. Every electrical installation is subject to current leakages which can vary considerably depending on such factors as the installation's condition, age, environment, etc.

These current leaks may flow through the fabric of the building (trunking, metal girders or other metal components), generating heat which in turn may lead to fire.

Direct contacts

Direct contact is caused by humans and may be due to either carelessness or clumsiness.

What is a direct contact? How can we protect ourselves? Here are the answers...

This is when someone makes contact with a live electrical component of a device or installation.

For example:

- a person inadvertently touching a live cable.
- a child sticking a metal object into a power socket.
- using male/male extensions or unprotected test cables.

In this case only basic protection is effective

Other examples

Someone touching a live busbar in a distribution panel or cabinet, or someone touching flush-mounted electrical trunking with the end of a tool, etc. In this case basic protection plus additional protection is effective

How can we protect ourselves?

There are two ways (independent of the neutral earthing system) of ensuring that personnel are protected against direct contact.

• Preventing access to live parts where possible.

Basic protection via physical or electrical isolation of live parts. This protection must ensure that live parts cannot be touched, even inadvertently.

How?

By using barriers, enclosures, closed cabinets which physically or electrically isolate live parts presenting a danger to the user, shuttered sockets, or insulation.

Additional protection

Must be provided by a 30-mA residual current device such as Lexic range of residual current devices. This protection is required in case the basic protection detailed above fails.

Indirect contacts

Indirect contacts are independent of humans: it results from an internal hardware fault.

What is an indirect contact? How can we protect ourselves? Here are the answers...

What is an indirect contact?

This is when a person makes contact with a metal earthed part which has accidentally been powered up following an insulation fault. This type of contact is very dangerous as, unlike direct contact, it is completely unexpected. For example, a person touching the metal frame of an electrical appliance which has defective insulation may be electrocuted through no fault of their own if the appliance is not protected.

How can we protect ourselves?

There are three possibilities

- Preventing access to potentially dangerous metal components via class II protection.
- Good connection of all exposed conductive parts to an effective earth.
- · A protective RCD according to the neutral earthing system.

A person is in danger of electrocution if the fault current raises the voltage of the accessible metal part above 50 V to earth.

Important note:

Under the Indian Electricity Rules [rules 61 (A), 71 (1) and 73 (1)], installation of an RCCB is mandatory in all installations of 5 KW and above, in all luminous tube signs and X-ray installations. The bureau of Indian standards recommends that RCCBs installed at construction sites, temporary installations, agriculture and horticulture premises, limit the residual current to 30 mA.

Lexic RCDs

■ Technical data

Residual current devices, selection and operation

The main function of a residual current device is to ensure that people are protected from any risk of electrocution. It can also ensure protection against risk of fire.

What is the nature of these risks? What are the consequences? Here are the answers...

Risks of electrocution-

The dangerous effects of electricity depend on two factors-:

- the flowing time through the human body
- the current value

These two factors are independent and the importance of the risk varies in accordance with the level of each factor.

The dangerous current value through a human body depends on the touch voltage and touch resistance of the human body.

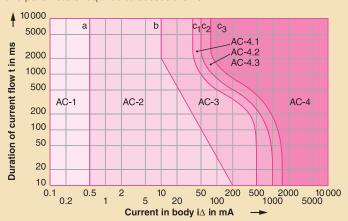
In practice, the current value is defined using a standard "safety" voltage of 50 V. This voltage takes into account the maximum current which can be withstood by a human being with a minimum internal electrical resistance in given conditions. It also takes into account the maximum permissible time for the current to pass through the body without dangerous physio-pathological effects.

50 V is considered as the safe limit of voltage for human body in dry condition.

How does an electrical current affect the human body?

When subject to a voltage, the human body reacts like any other receiver with a given internal resistance. An electrical current passes through the body with three serious risks :

- Locking of the muscles, or tetanisation: the muscles through which the current passes contract and remain contracted: if this includes the rib cage, breathing may be impeded.
- Action on the heart: the cardiac rhythm is completely disrupted (ventricular fibrillation).
- Thermal effects may cause varying levels of damage to body tissue, including severe burns in the case of very high currents.



Examples of electrocution by direct or indirect contact.

Effect of current on human body

The standards define the following curves, which take into account the two parameters required to assess the risk:

 $\begin{array}{l} i\Delta: current \ flowing \ through \ body. \\ t: time \ taken \ for \ current \ to \ pass \ through \ body. \end{array}$

These curves show the various zones of effect of an alternating current on people : they derive from IEC 60 479 and determine

4 main risk zones

T IIIaiii II	4 main 113k 2011C3						
Zone	Physiological effects						
designation							
zone AC-1	Usually no reaction						
zone AC-2	Usually no harmful physiological effects						
zone AC-3	Usually no organic damage to be expected. Likelihood of cramp like						
	muscular contractions and difficulty in breathing for durations of current-						
	flow longer than 2 s. Reversible disturbances of formation and conduction of						
	impulses in the heart, including atrial fibrillation and transient cardiac arrest						
	without ventricular fibrillation increasing with current magnitude and time						
zone AC-4	Increasing with magnitude and time, dangerous pathophysiological effects						
	such as cardiac arrest, breathing arrest and serious burns may occur in						
	addition to the effects of zone-3						
zone AC-4.1	Probability of ventricular fibrillation increasing up to about 5% C1 - C2						
zone AC-4.2	Probability of ventricular fibrillation up to about 50% C2 - C3						
zone AC-4.3	Probability of ventricular fibrillation above 50%						

 * For durations of current flow below 10 ms, the limit for the body current at line b remains constant at a value of 200 mA.

Call for technical assistance

New Delhi : Tel.: (011) 3990 2200

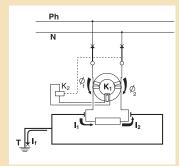
Kolkata : Tel.: (033) 4021 3535 / 36

Mumbai : Tel.: (022) 3385 6200

Chennai : Tel.: (044) 2836 4165 / 67 / 68

Hyderabad : Tel.: (040) 2341 4398 / 67

www.legrand.co.in

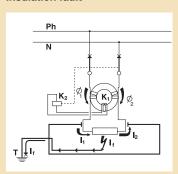

A residual current device continuously measures the difference between the value of the input and the output currents. If the value is not equal to zero, this indicates a leak

When this leak reaches the level at which the differential is set (its sensitivity), the device trips and breaks the circuit.

What are the operating principles of a residual current device? What are the selection criteria for a residual current device? Here are the answers...

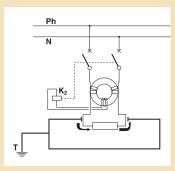
Operating principle of a residual current device

No fault present



Therefore no current is induced in coil K₁, and coil K₂ is not excited. The contacts do not open. The equipment operates normally

 $I_{i} = 0$, thus $I_1 = I_2$


 $\emptyset_1 = \emptyset_2$ $\emptyset_1 - \emptyset_2 = 0$

Insulation fault

A current is thus induced in coil K₁....

 $I_f \neq 0$ $I_1 > I_2$, thus $\emptyset_1 > \emptyset_2$, thus $\emptyset_1 - \emptyset_2 \neq 0$

...coil K2 is excited, the contacts open and the equipment is automatically switched OFF

Selecting a residual current device

First determine your requirement. This exists on two levels :

- 1 The need to protect against direct or indirect contacts.
- 2 The need to ensure protection against overloads and short-circuits. If protection against indirect contact is required, use residual current devices with a sensitivity of: 30 mA,

100 mA. 300 mA,

The rating (40, 63 A, etc.) is selected according to the load.

If protection against direct contact is required, use residual current device with a sensitivity of 30 mA.

The sensitivity of a residual current device $I\Delta n$ is the current level at which tripping is sure to occur. To do this, the standards concerning residual current devices stipulate that tripping must occur between $I\Delta n / 2$ and $I\Delta n$.

Types of residual current device

There are 2 types of RCD: the AC type and the A type

Both types are produced in the "S" (discriminating) or normal versions. They conform to Indian and International standards IS 12640, IEC 61008 and IEC 61009 as well as European standards EN 61008 and FN 61009

• Type A

Sensitive to residual alternating currents and residual currents with a DC component.

Use: special applications

if it is possible that the fault currents are not purely sinusoidal (rectifier bridge, etc.)

• Type AC

Sensitive to residual alternating currents Use: standard applications

Type S

Delayed trip for discrimination with other residual current devices. Use: for discrimination with a downstream device.

- Enhanced immunity to unwanted tripping in environments with disturbances. eg. diesels, computers, printers, etc
- Detects faults with DC components eg. thyristors, trio etc.

Residual current circuit-breaker with or without overload protection? Which do I choose?

Choose a residual current circuit-breaker (RCCB) if you do not need to protect against overload and short circuits (caution! an RCCB must be connected to some form of line protection device : either a circuitbreaker or a fuse).

Choose a residual current circuit-breaker with overload and short circuit protection (RCBO) if this type of protection is not available.

Residual current circuit-breakers without overload and short circuit protection (RCCB)

These provide two functions: fault current detection, measurement and cut-off: and isolation of an installation.

RCCBs are governed by standards IS 12640 (part 1), IEC 61008-1.

Residual current circuit-breakers with overload and short circuit protection (RCBO)

These provide three functions: fault current detection, measurement and cut-off protection against overloads and shortcircuits: and isolation of an installation.

Residual current circuit-breakers are governed by standards IS 12640 (part 2), IEC 61009-1.

The "test" function

A residual current device is a safety device, and it is therefore vital that it is regularly tested. This function is therefore required by the standard governing residual current protective devices, and ensures correct operation. All Lexic RCDs are equipped with this function.

Note: We offer Type AC, Type A-S and Type Hpi RCDs

common auxiliaries for MCBs, Isolators, RCBOs and RCCBs up to 63 A

Lexic

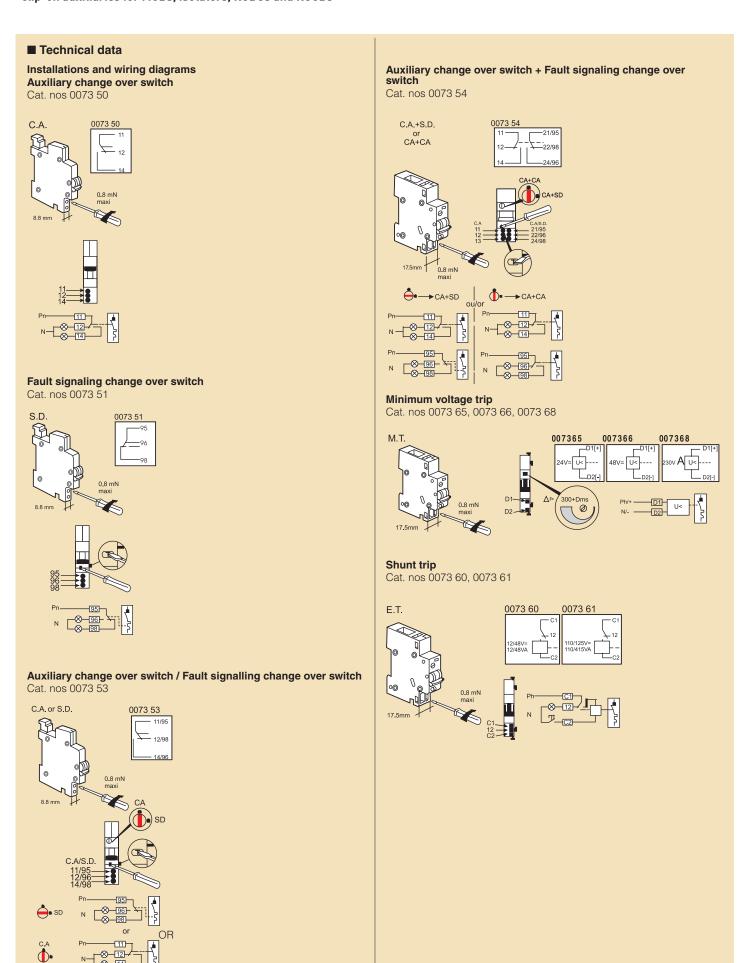
mounting accessories for MCBs, RCBOs and RCCBs DIN rail

Dimensions (p. 170) Technical data (p. 133)

Clip on the left-hand side of the MCB (maximum 3) Allow insertion of the supply busbar at the top Auxiliaries common for MCBs, Isolators, RCBOs and RCCBs

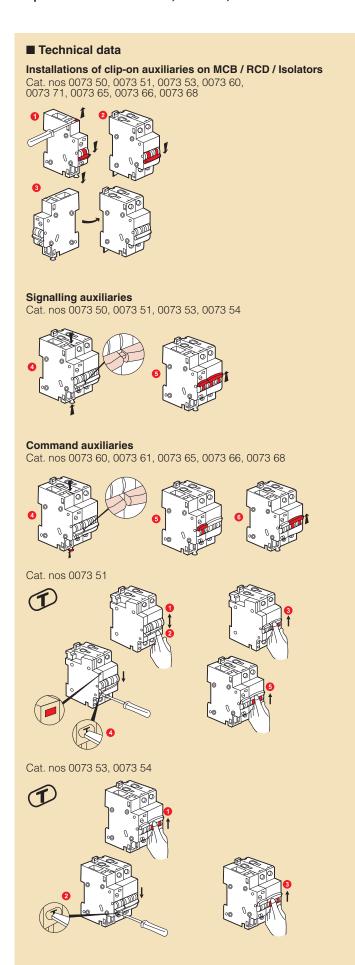
Pack	Cat. nos.	Signalling auxiliaries	Number of 17.5 mm modules
1	0073 50	6 A - 250 V√	0.5
1	0073 51	Indicates the position of the MCB, Isolator, RCD. Fault signalling changeover switch 6 A - 250 V Indicates the tripping of the MCB or RCD	0.5
1	0073 53	in the event of a fault Auxiliary changeover switch which can be modified to a fault signaling switch	0.5
1	0073 54	6 A - 250 V Auxiliary change over 6 A - 250 VA switch + fault signalling switch which can be modified to 2 auxiliary change over switches.	1
		Command auxiliaries	
		Shunt trip	1
1 1	0073 60 0073 61	Enables the MCB or RCD to be tripped from a remote location 12 to 48 V √ / 110 to 415 V √ 110 to 125 V	1 1
		Minimum voltage trips. Time delay adjustable from 0 to 300 ms.	
1 1 1	0073 65 0073 66 0073 68	48 V ==	1 1 1

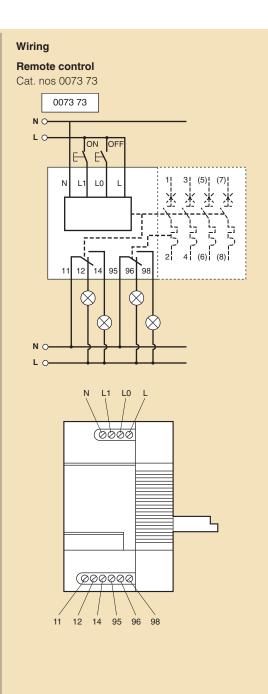
i 1	0073 66 0073 68	48 V ==	
		Remote control for MCBs	
1	0073 73	Clip on the left hand side of the MCBs motor driven contol module Remote control for DP/TP/FP MCBs. Auxiliary changeover and fault signalling changeover incorporated 230 V AC - 3 modules	


Pack	Cat. nos.	Padlock support
2/100	0044 42	Support for 5 mm and 6 mm padlock for locking MCB in ON / OFF position

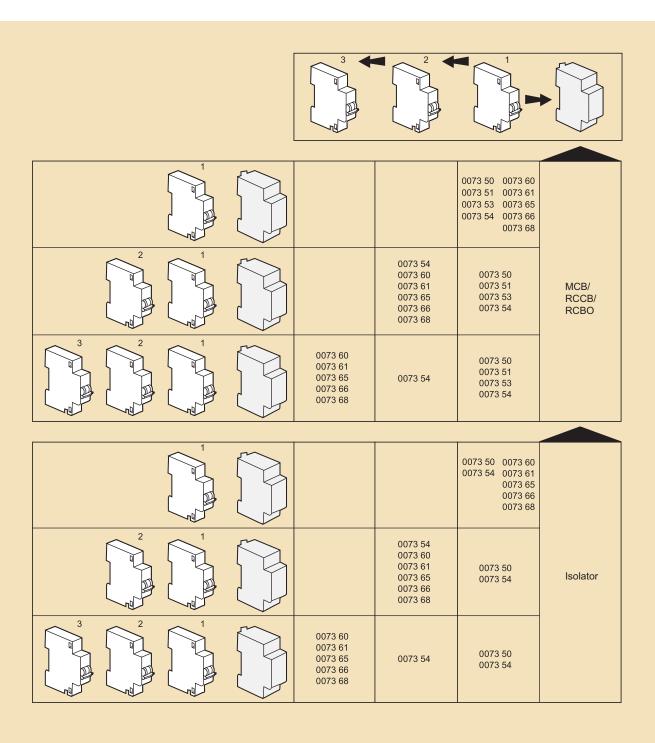
	2 , 100	3F FF00	locking MCB in ON / OFF position
			Terminal shields
of n s	2 /96	0044 44	Terminal shield (4 separable poles) for covering MCB screw terminal to avoid opening of terminals by an unauthorised person. Sealable terminal shield (4 separable poles) for MCBs, RCBOs and RCCBs to seal terminal screws.
			Clip on adaptor
			Enables mounting of panel accessories, such as 22.5mm dia, push buttons in DBs. A hole of requisite diameter can be drilled through the adaptor to fit the panel
	10	0044 06	accessory. 3 module clip on adaptor for rail டா
			Labels for Lexic devices
	1	0017.00	
	'	6017 99	Label for label holder with printed symbols, alphabets and numbers
			Entry terminals
			Entry terminals are used for terminating aluminium cable.
	1	6034 48	While terminating aluminium cable on MCBs, Isolators, & RCDs, for current rating from 32A and above, the use of entry terminals is mandatory. 50 mm² entry terminal for MCBs / Isolators / RCCBs

6034 49 50 mm² entry terminal for RCBOs


clip-on auxiliaries for MCBs, Isolators, RCBOs and RCCBs



la legrand


Lexic

clip-on auxiliaries for MCBs, Isolators, RCBOs and RCCBs

Lexic **MPCBs**

0028 06

0028 22 + 0028 06 + 0028 17

Conform to EN/IEC 60947-1, EN/IEC 60947-2, EN/IEC 60947-4-1

Pack	Cat.Nos	Triple po	le MPCBs	
			5 mm ntrol and protectio to 15 kW (400 V)	n of
		Nominal rating (A)	Thermal adjustement range (A)	Numbers of modules
1	0028 00	0.16	0.1 - 0.16	2.5
1	0028 01	0.25	0.16 - 0.25	2.5
1	0028 02	0.4	0.25 - 0.4	2.5
1	0028 03	0.63	0.4 - 0.63	2.5
1	0028 04	1	0.63 - 1	2.5
1	0028 05	1.6	1 - 1.6	2.5
1	0028 06	2.5	1.6 - 2.5	2.5
1	0028 07	4	2.5 - 4	2.5
1	0028 08	6.5	4 - 6.5	2.5
1	0028 09	10	6.3 - 10	2.5
1	0028 10	14	9 - 14	2.5
1	0028 11	18	13 - 18	2.5
1	0028 12	23	17 - 23	2.5
1	0028 13	25	20 - 25	2.5
1	0028 14	32	24 - 32	2.5

		Auxiliarie	es	
		Failure co	ntact	
		Contact	Capacity	Numbers of modules
1	0028 16	N/C + N/O	6 A/690 V	0.5
		Signal cor	ntacts	
1	0028 17	N/C + N/O		0.5
1	0028 18	2 N/C	6 A/690 V	0.5
		Undervolt	age trips	
		Coil voltage	Consumption trip/hold	Numbers of modules
1	0028 22	230 V√	12/3.5 VA	1
1	0028 23	400 V√ I	12/3.5 VA	1 1
		Shunt trip	s	
1	0028 25	230 V√	3.5 VA	1
1	0028 26	400 V√	3.5 VA	1

		Accessories
1	0028 29	IP 65 box For motor MCB with auxiliary contact (Cat.Nos 0028 16/17/18) and/or a trip (Cat.Nos 0028 22/ 23/25/26) With knock out entries for PG 16 cable glands 4 modules
1	0028 30	Emergency stop button Fits on IP 65 box for replacement of etancheity membrane Ensures IP 65 protection
		Pilot lights Fixing in front of box Cat.No 0028 29
1 1	0028 31 0028 32	Voltage Color 230 V
1	0028 34	Padlock Padlock in "off" position 3 padlocks max Ø4.5

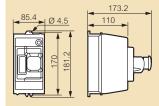
Lexic **MPCBs**

■ Technical data

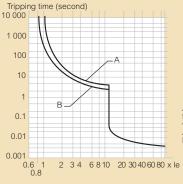
The motor MCB has a signalling system for magnetic tripping that prevents all dangerous shutdown following a short-circuit previously isolated by the device
Takes 3 auxiliaries mounted simultaneously by clipping on

- on the left: 1 undervoltage / shunt trip
 on the right: 1 fault signal + 1 signalling contact

■ Electrical characteristics

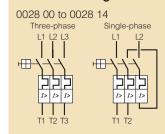

Rated insulating voltage Ui: 690 V
Impulse withstand voltage: 6 kV
Rated frequency: 50/60 Hz
Dissipated power per phase: 0.57-1.46 W
Magnetic tripping: 12 max.
Mechanical lifespan: 100-000 cycles
Electrical lifespan: 32 A (AC3): 100-000 cycles
Operating temperature: -20°C to + 70°C
Use class: A
Protection index: IP 20

Protection index: IP 20
Connection cable cross-section (1 or 2 conductors): flexible wire 1-6 mm² or AWG 16-10


■ Breaking capacity

	Detin	Short circuit rated breaking capacity (kA)							
Cat. nos	Rating	23	230 V 400 V		500 V		690 V		
	(A)	lcu	lcs	lcu	lcs	lcu	Ics	lcu	lcs
0028 00	0.16	100	100	100	100	100	100	100	100
0028 01	0.25	100	100	100	100	100	100	100	100
0028 02	0.4	100	100	100	100	100	100	100	100
0028 03	0.63	100	100	100	100	100	100	100	100
0028 04	1	100	100	100	100	100	100	100	100
0028 05	1.6	100	100	100	100	100	100	100	100
0028 06	2.5	100	100	100	100	100	100	8	8
0028 07	4	100	100	100	100	100	100	8	8
0028 08	6.5	100	100	100	100	100	100	8	8
0028 09	10	100	100	100	100	42	21	8	8
0028 10	14	100	100	25	12.5	10	5	2	2
0028 11	18	100	100	25	12.5	4	2	2	2
0028 12	23	100	100	25	12.5	4	2	2	2
0028 13	25	100	100	25	12.5	4	2	2	2
0028 14	32	100	100	25	12.5	4	2	2	2

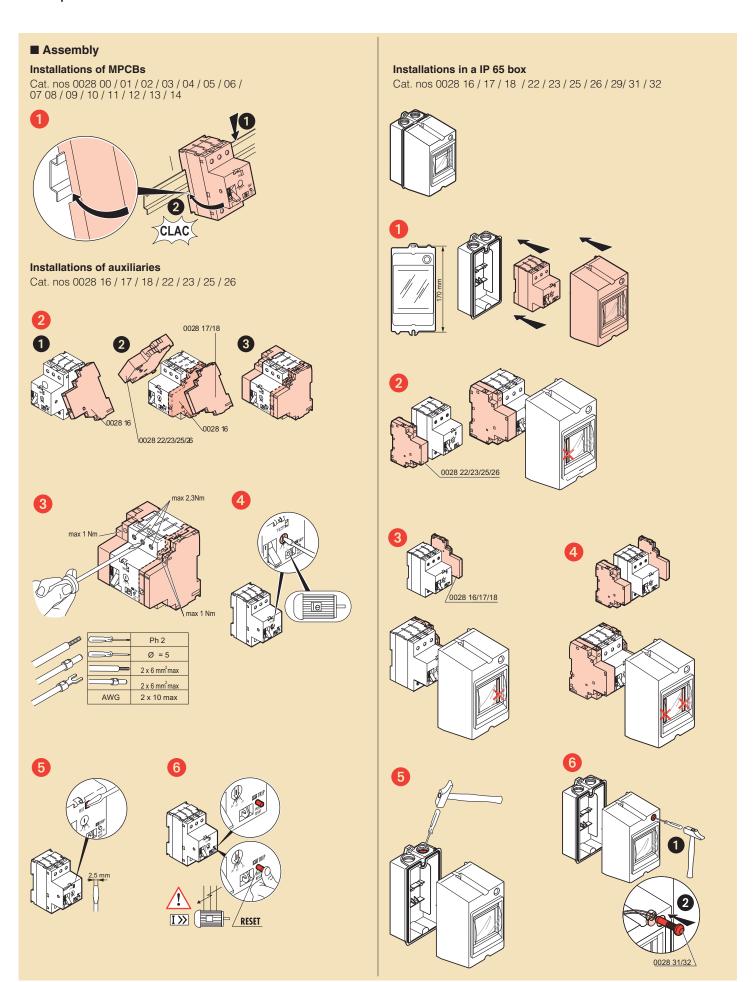
■ IP 65 box 0028 29 equipped with stop button 0028 30

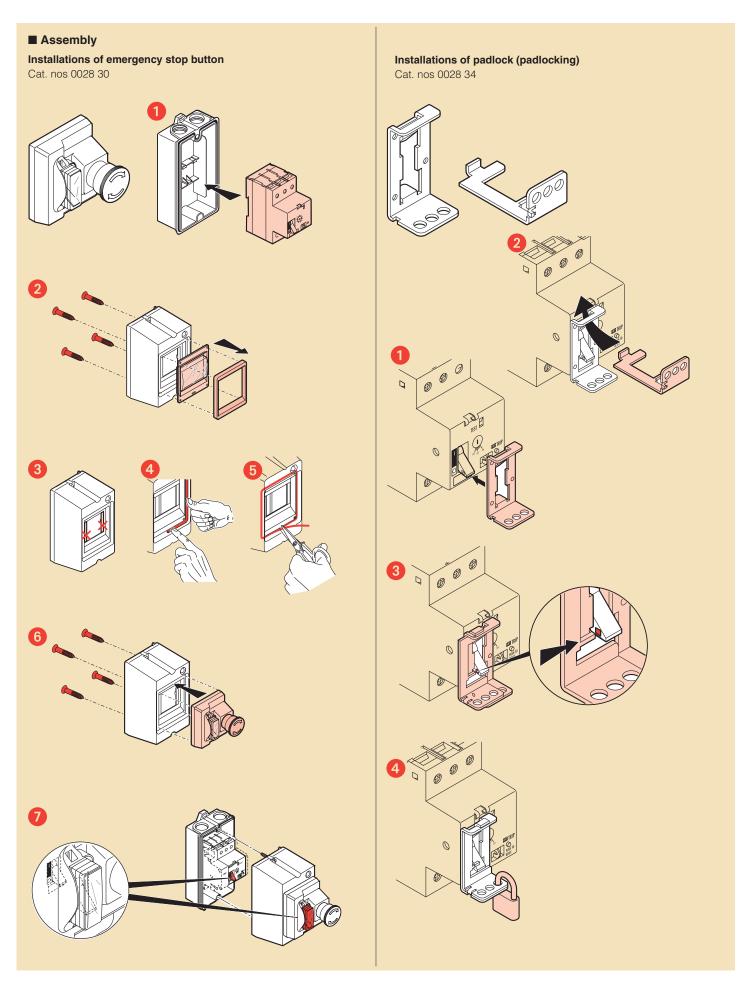


■ Thermal-magnetic tripping curve

Approximate cold tripping time. To obtain the hot tripping time, multiply the graph value by 0.75
A = Balanced operation over 3 phases
B = Operation over 2 phases (phase absence)

■ Electrical diagrams





Lexic motor protection circuit breakers

□ legrand

Lexic motor protection circuit breakers

VOLTAGE SURGE PROTECTOR >>>

a solution for every risk

Lexic

0039 28

1/20

1/12 **1**/20

003

Dimensions (p. 170) Technical data (p.118-121)

voltage surge protectors for power lines

Voltage surge protectors for distribution boards or consumer units Conform to standard NF C 61-740, IEC 61643-1 and EN 61643-11 Satisfy requirements of guide C 15-443

Fitted with built-in thermal protection
Consist of a base and a plug-in replacement module with status indicator
Green: surge protector operational

Orange: module needs replacing

Can be fitted with a signalling auxiliary to transfer surge protector status

For 230/400 VAC supply Frequency: 50/60 Hz

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 m

High protection /

Required for buildings equipped with lightning conductors and in very exposed areas. High flow-to-earth capacity 70 kA.

Increased protection - I - Class II

	I max : 40 kA (8/20 μ s wave)					
	UP: 1.4 kV (protection level)					
	For neutral earthing systems: TT, TN					
9 35	1-pole	6032 35	1			
9 36	2-pole	6032 69	2			
9 38	4-pole	6033 20	4			

Increased protection 🥢

For overhead electrical power supplies. Required in areas with average exposure.

Standard protection - S - Class II

	I max : 15 kA (8/	20 µ s wave)				
	UP: 1.2 kV (protection level)					
	For neutral earthing systems: TT, TN					
0039 40	1-pole	6032 35	1			
0039 41	2-pole	6032 69	2			
0039 43	4-pole	6033 20	4			

Standard protection 🗲

Essential for all installations, whatever the type of power supply.

Accessories Plug-in replacement modules With indicator

Green: surge protector operational

		reliow . Module needs replacing					
		I max (kA)	UP (kV)	For surge protector			
5 /20	0039 28	70	2.0	0039 20/21/22/23			
5 /20	0039 39	40	1.4	0039 35/36/38			
5 /20	0039 44	15	1.2	0039 40/41/43			

Signalling auxiliaries

With changeover micro switch 5 A - 250 V AC Clip onto the base of the surge protector le.

		onp onto the baco
1 /42	0039 56	For 2-pole module
1 /42	0039 57	For 3-pole module
1 /42	0039 58	For 4-pole module

voltage surge protectors for telephone lines

0038 28

0038 29

Dimensions (p. 155) Technical data (p. 140-143)

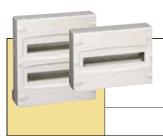
For protection of : telephone, fax, modem, etc. connected on the internal telephone line, against over voltages of atmospheric origin Installed in a distribution box Connected in series on the telephone line Provided with a status indicator :

• Green : surge protector operational

• Orange : surge protector needs replacing Conforms to standard IEC 61643-21 and EN 61643-21

Pack	Cat. nos.	Voltage surge protector
		l max: 10kA & ln: 5kA (8/20 μs wave)
1	0038 28	For analogue telephone line
1	0038 29	For digital telephone line

Lexic


voltage surge protectors

■ Technical data

		1		
Cat.No	High protection (H) 0039 20/21/22/23	Increased protection (I) 0039 35/36/38	Standard protection (S) 0039 40/41/43	
Neutral earthing system	TT - TN - IT	TT - TN	TT - TN	
Max. steady state voltage (Uc)	440 V√	320 V√	320 V∿	
Frequency	50/60 Hz	50/60 Hz	50/60 Hz	
Type EN-61613-11	1	2	2	
Max. I max 8/20 μs	70 kA	40 kA	15 kA	
current I imp 10/350 µs	10 kA	-	-	
Nominal discharge current (In, wave 8/20 µs)	20 kA	15 kA	5 kA	
Up protection level In	2 kV	1.4 kV	1.2 kV	
Ut	440 V	400 V	400 V	
Leakage current at Uc (Ic)	< 1 mA	< 1 mA	< 1 mA	
Time delay Associated protection - max. (EN-61613-11)	160 A DPX	125 A DPX	20 A MCB C curve	
- min.	MCB C curve 40 A	MCB C curve 20 A	MCB C curve 20 A	
Follower current If	Zero	Zero	Zero	
Terminal capacity - rigid conductor - flexible conductor			25 mm² 16 mm²	
Degree of protection	IP	20 installed in enclosu	re	
Environment - operating temperature - storage temperature			0 + 40 °C 0 + 70 °C	
Response time	25 ms			

VSP for telephone lines

	Analogue line	Digital line
Cat. nos.	0038 28	0038 29
Mav. discharge current (I max,		
wave 8/20 micro second)	10 kA	10 kA
Nominal discharge current (In,		
wave 8/20 micro second)	5 kA	5 kA
Up protection level	300 V	100 V
Terminal capacity		
- rigid conductor	2.5 mm ²	2.5 mm ²
- flexible conductor	2.5 mm ²	2.5 mm ²
Associated protection by Lexic MCB	20 A	20 A
Degree of protection	IP 20 installed in enclosure	
Operating temperature	- 10° C to + 40° C	
Storage temperature	- 20° C to + 70° C	

Aesthetic and flexible range of **Ekinoxe TX DBs**

Ekinoxe TX DBs (p. 184)

voltage surge protectors (continued)

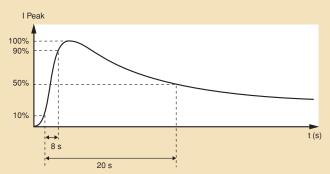
■ Lightning

1 - The effects of lightning

Lightning directly or indirectly generates the following effects:

- thermal (blow-outs, fire)
- electrodynamic (loosening of terminals)
- rise in earth voltage (risk of electrocution)
- overvoltages of several thousand volts and destructive induced currents (damage to electrical and electronic equipment, interruption of operation)

2 - Protection against the effects of lightning


This is based essentially on:

- catching and discharging the current to earth
- the use of voltage surge protectors
- the passive protection of the installation

Passive protection (poor, good) designates the part of the protection provided by the structure and the configuration of the installation itself (neutral earthing system, area, level of equipotentiality, etc.)

■ Regulation

Standard EN 61-643-11, characterises the indirect effects of lightning based on a 8/20 μs waveform, type 2 voltage surge protector and the direct effect by a 10/350 μs wave form type 1 voltage surge protector (v.s.p.)

When a voltage surge protector is installed on the power circuit, it is recommended that one is installed on the communication circuit (telephone line)

More than 1 v.s.p. should be installed in electrical board and as closed as possible to the equipment to be protected

The Lexic range is completed by proximity v.s.p. (type 3) for electrical accessories (Mosaic and multi-outlet extensions)

These proximity accessories are dedicated to the sensitive equipment (electronics, information technology, home cinema etc.)

■ Choice of the level of lightning protection

Prior to the installation of the lightning protection devices, the risk must be assessed, using a number of criteria:

- level of exposure of the area (\$\frac{1}{2}\$, \$\frac{1}{2}\$\frac{1}{2}\$, \$\frac{1}{2}\$\frac{1}{2}\$
- · location of the building
- · power supply, neutral system TT, TN, IT
 - underground
 - overhead
- the presence of a lightning conductor on/close to the building
- the type of equipment to be protected
- the cost of the consequences of the equipment not being available The level of this lightning protection is indicated as:
- medium (★)
- high (★★)
- very high (★★★)

The protection must be chosen according to the most exacting criterion E.g. whatever the level of exposure, the presence of a lightning conductor requires a very high level of protection

Additional protection will be necessary according to the sensitivity of the equipment to be protected (computing, electronic) and the area of the installation

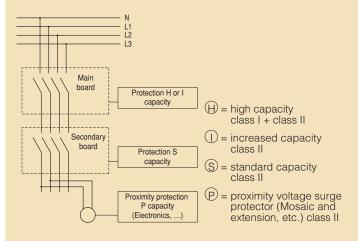
1 - Defining the required level of protection $(\star, \star\star, \star\star\star)$

	Level of exposure			
Location of the installation	₽.	4	<i>{ { { { { { { { { {</i>	
Building location				
tighly packed buildings		*	**	
scattered buildings	*	**	**	
isolated	*	**	***	
in mountains, close to				
a stretch of water	**	***	***	
or on top of a hill				
Power supply				
overhead	*	**	***	
underground		*	**	
Presence or proximity of a lightning conductor	***	***	***	

2 - Determining the level of sensitivity of the equipment

Level of sensitivity	Equipment	Protection level
Low sensitivity	motors, heating equipment	> 2 kV
Sensitive	domestic electrical appliances, lights	1.5 to 2 kV
High sensitivity	computer equipment	1.5 kV

The choice is specific to each installation and depends on:


- ullet the required level of lightning protection $(\star, \star\star, \star\star\star)$
- the sensitivity of the equipment
- the configuration of the installation (passive protection)

voltage surge protectors (continued)

3 - Position of the voltage surge protectors

Legrand voltage surge protectors are available in 4 levels, linked to their lightning impulse discharge capacity according to the 8/20 µs and 10/350 µs waveform

4 - Determine voltage surge protectors capacities

Sensitivity	Level	of lighting prot	Position of the voltage	
of equipment	*	**	***	surge protectors
	S	1	Н	Head of installation
Low sensitivity		S	S	Distribution level
constantly				Application level
	S	I	Н	Head of installation
Sensitive		S	S	Distribution level
	Р	Р	Р	Application level
High sensitivity	I	Н	Н	Head of installation
	S	S	I	Distribution level
	Р	Р	Р	Application level

5 - Choice of the catalogue number

The choice of the catalogue number depends on the electrical layout of the installation (single phase, 3-phase), the neutral earthing system and the required capacity

	Voltage surg High capacity (H)		ge protectors for distrib Increased capacity (I)		ution boards Standard capacity (S)	
Neutral earthing system	1P or 1P+N	3P or 3P+N	1P or 1P+N	3P or 3P+N	1P or 1P+N	3P or 3P+N
TT/TNS	0039 21	0039 23	0039 36	0039 38	0039 41	0039 43
TNC	0039 20	0039 22	-	-	-	-
IT with neutral	0039 21	0039 23	-	-	-	-
without neutral	0039 20	0039 22	-	-	-	-

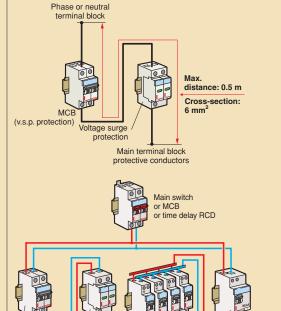
■ Installation

1 - Associated protection

The circuit supplying the v.s.p. can be protected against short circuits and overloads by MCB according to selectivity charts

2 - Connection principles

For the voltage surge protector to perform it's function as well as possible, it must be installed:


as a tap-off

Protection

of all poles MCB 20 A

Cat.No 0064 59

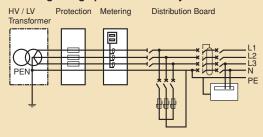
- keeping as short a connection length as possible between the phase-neutral terminal block and the PE or PEN terminal block
 in accordance with EMC (electromagnetic compatibility) rules: avoid the use of loops, fix the cables against metal conductive parts

3 - Recommanded cross-sections for conductors linking voltage surge protectors

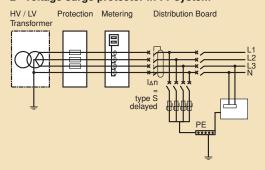
To application

Capacity	Cross-section (mm²)
Standard (S)	6
Increased (I)	10
High (H)	16

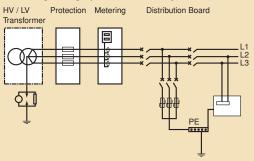
Plug-in voltage surge protector


4 - Minimum distances between voltage surge protectors in one installation

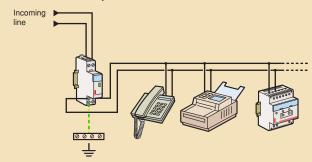
Downstream v.s.p.	Upstream v.s.p.	Distance (in meter)		
	1	6		
H	S	8		
	P	10		
	S	4		
'	P	6		
S	Р	2		



■ Installation principle


1 - Voltage surge protector in TN system

2 - Voltage surge protector in TT system



3 - Voltage surge protector in IT system

■ Telephone characteristics

Protection of a telephone line

- 1 voltage surge protector per pair If digital, 2 pairs (2 x 0038 29) If analogue, 1 pair (1 x 0038 28)

Rex-Analogue time switches for DIN rail mounting and wall mounting MaxiRex

6499 14

6499 15

Dimensions (p. 170) Technical data (p. 149-155)

230 V √, 50/60 Hz
Voltage tolerance - ± 10%
Conforms to IEC 60730-1, EN 60730-1
Analogue 24 hrs and 7 days time switch
With 3 position changeover switch (5 terminals)
Suitable for DIN rail mounting, wall mounting and installation in plastic box with locking facility
With manual override switch
Hands can be moved clockwise or anti clockwise for easy setting of time.

Pack	Cat. nos.	MaxiRex with 4 terminals					
1/30	6499 15	(without plastic box) MaxiRex 4QT (with 500 hrs. working reserve) 24 hrs. programme Voltage Frequency 230 V 50-60 Hz					
1/30	0499 13	230 V 50-60 HZ					
		MaxiRex with 4 terminals (with plastic box)					
		MaxiRex 4QTB (with 500 hrs. working reserve) 24 hrs. programme					
1	6499 14						
1	6499 14	(with 500 hrs. working reserve) 24 hrs. programme Voltage Frequency					
1	6499 14	(with 500 hrs. working reserve) 24 hrs. programme Voltage Frequency 230 V 50-60 Hz					

Pack	Cat. nos.	MaxiRex with 5 terminals
1 /30	6499 39	(without plastic box) MaxiRex 5QW (with 500 hrs. working reserve) 7 days programme Voltage Frequency 230 V 50-60 Hz
1 /30	6499 64	MaxiRex QT 30A (with 100 hrs. running reserve) 24 hrs. programme Voltage Frequency 230V 50-60 Hz Robust analogue time switch with real 30A switching capacity
		Accessories
1 /30 1 /10	6499 49 6499 48	Terminal cover for MaxiRex 4 and 5

Rex-Analogue time switches for front panel and wall installation EconoRex

Rex-Analogue time switches for DIN rail mounting MicroRex - 1 module

0499 86

Dimensions (p. 170) Technical data (p. 149-155)

230 V √, 50/60 Hz
Voltage tolerance - ± 10%
Conforms to IEC 60730-1, EN 60730-1
Analogue 24 hrs time switch
With 3 position changeover switch
Suitable for DIN rail mounting and surface mounting With manual override switch With 72 X 72 mm display

Pack	Cat. nos.	EconoRex				
1 /30	0499 86	EconoRex MQT Front panel mounting (with 100 hrs. running reserve) 24 hrs. programme Voltage Frequency 230 V 50/60 Hz				
		Accessories				
1	0044 07	Accessories for EconoRex BQTAP DIN rail adaptor				

0037 40

230 V√, 50/60 Hz 230 V√, 50/60 Hz

Voltage tolerance - ± 10%

Conforms to IEC 60730-1, EN 60730-1

Modular analogue 24 hrs time switch

With 3 position changeover switch

Suitable for DIN rail mounting

With manual override switch With quartz controlled motor

Pack	Cat. nos.	MicroRex QT1	1				
		(with 100 hrs. running reserve) 24 hrs. programme					
1 /100	0037 40	Voltage 230 V	Frequency 50/60 Hz	Number of 17.5 modules 1			

Ekinoxe™

Next generation of **Distribution Boards**

Refer p. 177-187

Rex-Analogue time switches

for DIN rail mounting MicroRex - 3 modules

Rex - digital time switches

0037 53

Dimensions (p. 170) Technical data (p. 149-155)

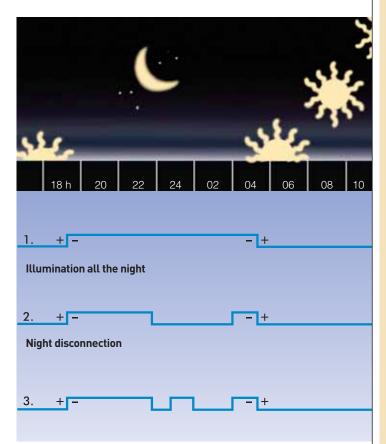
230 V√, 50/60 Hz Voltage tolerance - ± 10% Conforms to IEC 60730-1, EN 60730-1 Modular analogue 24 hrs and 7 days time switch With 3 position changeover switch Suitable for DIN rail mounting With manual override switch With quartz controlled motor

Pack	Cat. nos.	MicroRex QT3	31	
		(with 100 hrs. ru 24 hrs. program		
1 /30	0037 53	Voltage 230 V	Frequency 50/60 Hz	Number of 17.5 modules 3
		MicroRex QW	31	
		(with 100 hrs. ru 7 days programi		
1 /30	0037 55	Voltage 230 V	Frequency 50/60 Hz	Number of 17. modules 3

0047 64

- according to VDE 631-1 and 631-2-7, IEC 60 730-1 and 60 730-2-7, EN 60 730-1 and 60 730-2-7
- with text based programming concept
- Selectable languages: English, German, French, Italian, Spanish and Dutch
- fast programming due to selection of pre-set groups of days Mo-Su, and individual selection of days easy programming with PC using Legrand software and data key a program consists of an ON and OFF time and their assignment to
- certain days

- Backup on data key possible
 with additional fuctions:
 holiday program (permanently ON or OFF)
 1 hour-test-outputs are switched ON for 1 hour


- I nour-test-outputs are switched ON for I nour hour counter for max. 65535 hours. backgroundlighting for display and buttons running reserve of 6 years for date and time programs are stored in a EEPROM programs are shown as a weekly matrix on the display automatic summer-/wintertime change (daylight saving)
- Precision ± 0,2 sec/day
- manual switching
- lead sealable cover, even with inserted data key Calculation of sunrise and sunset by programming date, time and local coordinates.
- No light sensor needed!
- To save energy, a switching off at night is programmable. The switching On and OFF times can be adjusted asymetrically for ± 120 minutes (offset).
- The control input enables the activation of the time switch irrespective to the program. (NOT D22 Astro!)

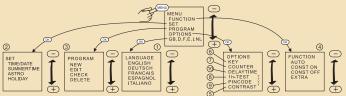
Pack	Cat. nos.	AstroRex D21						
		weekly time switc 1 changeover (Sf 16 A \sim cos ϕ =1 min. switching tin switching stem: 1						
1	0047 64	Voltage 230 V	Frequency 50/60 Hz	Number of 17.5 modules 2				
		AstroRex D22						
		2 changeover (SC	weekly time switch, 2 channels 2 changeover (SOPDT) 250 V/50 Hz, 16 A \sim cos ϕ = min. switching time: 1 min.					
1	0047 67	Voltage 230 V	Frequency 50/60 Hz	Number of 17.5 modules 2				

Rex astronomical time switches

Easy control of light based on the calculation of sunrise and sundown, with no need of installing a light sensor!

Night disconnection using the control contact (+/- = switch-on and switch-off time can be postponed up to +/- 120 minutes)

Astronomical time switches


■ Technical data 'S' N Overview of programmed \oplus 00 switching times for the Control input week. Resolution 0.5 h active S SIGNAL Function Switch status AOTU ON — TUE 14:00 02.NOV.2004 Socket for (HENU) (OK) Day, time, date data kev ▼ (4)

+ + + +

General information

- Starting: After connection of the supply voltage, the clock starts to run with last selected function. The relay position is determined by the currently active program.
- Backup battery
 - Background lighting switched off.
 - Data key READ/WRITE only via the menu.

Overview

'S' = A control i/p signal is superimposed on all program commands (OR circuit), while the control signal is applied, the output is switched 'ON' when the control signal is switched 'OFF', the output is switched 'OFF' after a delay time. Unless an 'ON' command is applied by a program (0 min.... 23 hrs-5 min)

Rex digital time switches AlphaRex

Dimensions (p. 170) Technical data (p. 149-155)

- According to VDE 631-1 and 631-2-7, IEC 60 730-1 and 60 730-2-7, EN 60 703-1 and 60 730-2-7 With text based programming concept Selectable languages: English, German, French, Italian, Spanish and Dutch Fast programming due to selection of pre-set days Mo-Su, Mo-Fr, Sa-Su and individual selection of days Easy programming with PC using Legrand software and data key A program consists of an ON and OFF time and their assignment to certain days

- Backup on data key possible
 With additional comfort functions:
 holiday program
 random function

 - pulse function (only 1 channel) with pulse duration of 1 sec up to 59 min, 59 sec. and 84 start times

- pulse function (only 1 channel) with pulse duration of 1 hour counter for max. 65 535 hours
 Background lighting for display and buttons
 Running reserve of 6 years for date and time
 Programs are stored in a EEPROM
 Programs are shown as a weekly matrix on the display
 Automatic summer/winter time change (daylight saving)
 Precision ±0.2 sec/day
 Manual switching
- Manual switching
- Sealable cover, even with inserted data key

Pack	Cat. nos.	AlphaRex	Pack	Cat. nos.	Accessories
1		AlphaRex D21 weekly time switch, 1 channel $\begin{array}{c cccc} & & & & & & & & & & & \\ & & & & & & & $	1		Data key - With the data key, it is possible to transfer programs into the time switch Select the data key function on "READ" on the time switch - The data key can be programmed on PC - Using the data key function "WRITE", programs can be transferred to data key, it allows to easily copy program from one time switch to another one. It can also be used as a backup - One data key allows to save 1 complete time switch program (56 ON/OFF) USB-adapter - to read and write data keys on PC - software include - connection via USB port - system requirements: Windows®2000 - Windows®ME, Windows®XP and Windows®98 second edition, 10 MB free disc space - serial adapter on demand

Rex digital time switches AlphaRex

■ Brief description of the programming possibilities

Text based programming

The AlphaRex uses clear text to guide you through the options and the programming. Every step is clearly displayed and the selected function is flashing. The integrated background lighting for display and buttons allows easy programming even at bad lighting conditions.

Selection language

Using the "MENU" button, allows to select the requested language. Default language is English.

Time, date, summer/winter time

The actual time (CET) and date have been pre-set in the factory. Default summer/wintertime is EU. Changes can be made by choosing "MENU" and "SET".

Programming

A program consists of an ON and OFF time and the assigned day(s). Before setting the ON and OFF times, the requested days have to be selected. MONDAY-SUNDAY, MONDAY-FRIDAY, SATURDAY-SUNDAY OR INDIVIDUAL. The INDIVIDUAL mode allows to select every single day of the week. It is also possible to program over midnight.

Relay function

With "MENU" and "FUNCTION" it is possible to change the relay position. By default it is "AUTO", the time switch switches at the programmed times. Additional selections are: "CONST ON" CONST OFF" and "EXTRA". With choosing "EXTRA" the stored program will be inversed. When the next programmed switching time has been reached, the time switch returns to normal mode.

Holiday

Selection the "HOLIDAY" function allows to set the start-and end-date of the holidays and has to be activated by selecting "ACTIVE", or deactivate it by selecting "PASSIVE". When the "HOLIDAY" function is activated, the stored program will be ignored during the selected days and replaced by "CONST ON" or "CONST OFF". When holiday is over, the AlphaRex returns to default mode.

Data key

When the time switch is connected to tension, the data key activated automatically the "DATA KEY" menu with the options "READ" and "WRITE"

"WRITE": programs stored in the time switch will be copied into the data key. Eventually stored programs on the data key will be overwritten.

"READ": programs stored on the data key will be copied into the time switch. Eventually stored programs on the time switch will be

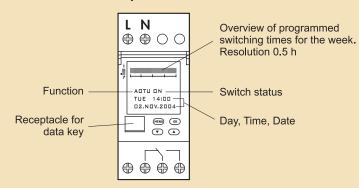
It is only possible to save 1 "time switch program" which consist of max. 56 ON/OFF (1 channel.) or max. 84 ON (1 channel pulse) or max. 2 \times 28 ON/OFF (2 channel) on the time switch and the data key.

When inserting the data key without the time switch being connected to tension, the "DATA KEY" menu will not appear automatically, but has to be selected manually.

Programming on the PC

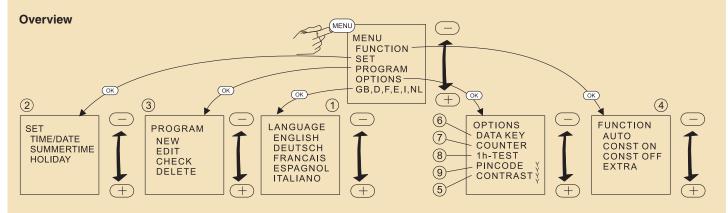
Next to the easy and text based programming directly on the time switch, it is also possible to do it on your PC by using the Legrand software and to transfer the program with the data key to the time switch. To save the PC-created programs on the data key, the USB adapter has to be installed.

System requirements: USB-port; Windows® 98 second edition; Window® 2000; Window®ME or Windows®XP, 10MB free disc space.


Reset

Pressing simultaneously on all 4 buttons for more than 2 seconds, will causes a deletion of all stored data. Language, time/date, summerwinter time and programs have to be re-installed.

Random function


To stimulate your presence with turning lights ON and OFF on different times everyday. Just setup a normal program, activate the 'Random' function and from now on all ON and OFF times will vary randomly for ± 30 minutes.

D21 - 1-channel with pulse function

General information

- Starting: After applying the supply voltage, the time switch starts automatically with the last selected function. The relay position is set by the current program.
- Battery backup
 - Backlighting not active.
 - Data key READ/WRITE only via the menu.

Rex time switches

■ Technical data

Analogue time switch

Туре	MaxiRex						
	4QTB	4QWB	4QT	5QW			
Catalogue no.	6499 14	6499 36	6499 15	6499 39			
Voltage	230 V AC	230 V AC	230 V AC	230 V AC			
Frequency	50 / 60 hz						
No. of channels	1	1	1	1			
Motor	quartz controlled	quartz controlled	quartz controlled	quartz controlled			
Switching dial	24 hrs	7 days	24 hrs	7 days			
Switching capacity for							
Resistive Cos φ = 1	20 A	20 A	20 A	20 A			
Incandescent lamps	4 A	4 A	4 A	4 A			
Inductive $\cos \varphi = 0.6$	10 A	10 A	10 A	10 A			
Contact		SPST					
Running reserve	500 hrs	500 hrs	500 hrs	500 hrs			
Minimum switching time	10 min	1 hr	10 min	1 hr			
Minimum setting interval	20 min	2 hr	20 min	2 hr			
Switching accuracy	± 10 min	± 1 hr	± 10 min	± 1 hr			
IP rating	IP 53	IP 53	IP 30	IP 30			
Operating temperature	- 10°C to + 50°C						

Туре	MaxiRex	EconoRex		MicroRex	
	QT	MQT	QT11	QT31	QW31
Catalogue no.	6499 64	0499 86	0037 40	0037 53	0037 55
Voltage	230 V AC				
Frequency	50 / 60 hz				
No. of channels	1	1	1	1	1
Motor	quartz controlled				
Switching dial	24 hrs	24 hrs	24 hrs	24 hrs	7 days
Switching capacity for					
Resistive Cos φ = 1	30 A	16 A	16 A	16 A	16 A
Incandescent lamps	1800 W	4 A	4 A	4 A	4 A
Inductive cos φ = 0.6	20 A	8 A	10 A	10 A	10 A
Contact	SPST	SPDT	SPST	SP	DT
Running reserve	100 hrs				
Minimum switching time	10 min	15 min	15 min	15 min	2 hrs
Minimum setting interval	20 min	10 min	30 min	30 min	4 hrs
Switching accuracy	± 30 min	± 15 min	± 5 min	± 5 min	± 30 min
IP rating	IP 30	IP 30	IP 20	IP 20	IP 20
Operating temperature	- 10°C to + 55°C				

Digital time switch

Туре	AlphaRex		AstroRex		
	D21	D22	D21	D22	
Catalogue no.	0047 61	0047 71	0047 64	0047 67	
Voltage	230 V AC	230 V AC	230 V AC	230 V AC	
Frequency	50 / 60 hz	50 / 60 hz	50 / 60 hz	50 / 60 hz	
No. of channels	1	2	1	2	
Туре	24 hrs / 7 days	24 hrs / 7 days	24 hrs	24 hrs	
Switching capacity for					
Resistive Cos φ = 1	16 A	16 A	16 A	16 A	
Incandescent lamps	8 A	8 A	10 A	10 A	
Inductive Cos φ = 0.6	10 A	10 A	4 A	4 A	
Contact	1 SPDT	2 SPDT	1 SPDT	2 SPDT	
Running reserve	6 yrs	6 yrs	6 yrs	6 yrs	
Minimum switching time	1 min ⁽¹⁾	1 min	1 min	1 min	
Minimum setting interval	1 min	1 min	1 min	1 min	
Switching accuracy	± 0.2 sec / day	± 0.2 sec / day	± 0.2 sec / day	± 0.2 sec / day	
IP rating	IP 20	IP 20	IP 20	IP 20	
Operating temperature	- 20°C to + 55°C	- 20°C to + 55°C	- 20°C to + 55°C	- 20°C to + 55°C	
No of module (17.5 mm)	2	2	2	2	

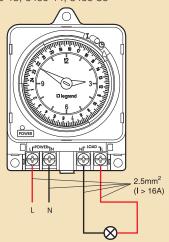
⁽¹⁾ Impulse version 1 sec.

Rex time switches

■ Technical data

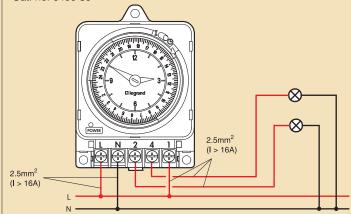
Allowed loads for time switches

		Nominal output (VDE) Allowed load			load at 230 V \sim ,	oad at 230 V √, 50 Hz	
	Consumption at 230 V √ 50 Hz	I Cos φ = 1	Output	Class	Incandescent halogen lamps (230V√)	Fluorescent lamps duo circuit	cos φ = 0.6
Cat.no.	Watt	Α	*)	IP	А	А	А
DIN rail mounting							
0037 40	0.38	16	1 S µ	20	4	14	12
0037 53	0.38	16	1 W μ	20	4	14	12
0037 55	0.38	16	1 W μ	20	4	14	12
0047 61	1	16	1 W μ	20	8	-	10
0047 71	1	16	1 W μ	20	8	-	10
0047 64	1	16	1 W μ	20	10	-	4
0047 67	1	16	1 W μ	20	10	-	4
		S	urface a	nd facia	mounting		
6499 15	0.38	16	1 W μ	20	4	14	12
0497 55	0.38	16	1 W μ	20	4	14	12
6499 14	0.38	16	1 W μ	20	4	14	12
0497 57	0.38	16	1W μ	20	4	14	12
6499 39	0.38	10	1 W μ	20	4	8	7
6499 36	0.38	16	1 W μ	20	4	8	8


*) W = changeover contact S = normal open μ = distance between contacts 3 mm

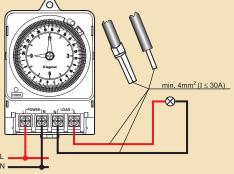
- \bullet Staircase time switches and timing relays \geq 1,00,000 changeovers, corresponding at ca. 27 changeovers / day.
- Time switches ≥ 10,000 changeovers, corresponding at ca. 5 changeovers / day.

■ Wiring diagram

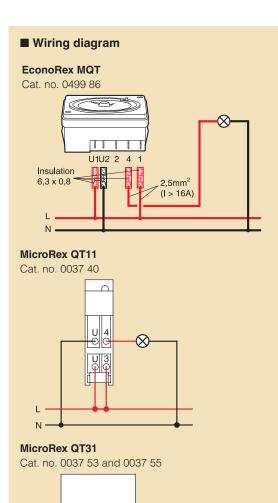

MaxiRex

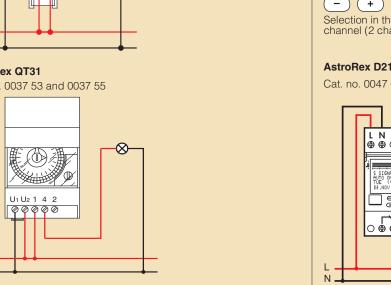
Cat. no. 6499 15, 6499 14, 6499 36

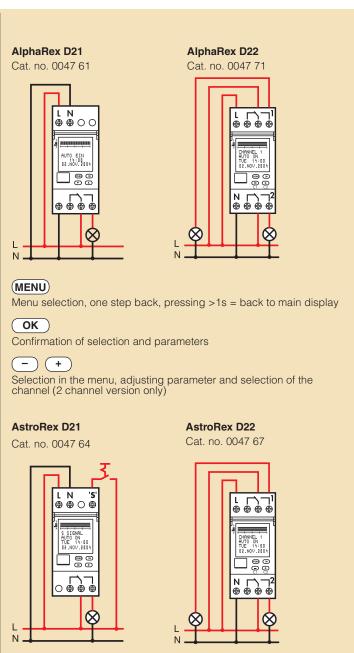
MaxiRex


Cat. no. 6499 39

MaxiRex


Cat. no. 6499 64

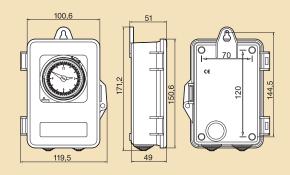

Wiring diagram



la legrand

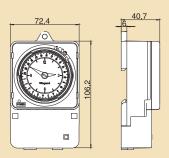
Rex time switches

'S' = A control i/p signal is superimposed on all program commands (OR circuit), while the control signal is applied, the output is switched 'ON' when the control signal is switched 'OFF', the output is switched 'OFF' after a delay time. Unless an 'ON' command is applied by a program (0 min.... 23 hrs-5 min)

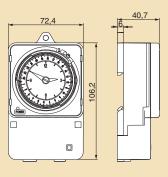


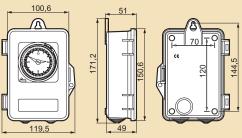
Rex time switches

■ Dimensions

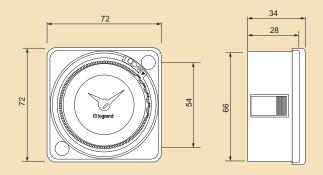

MaxiRex 4QTB and MaxiRex 4QWB

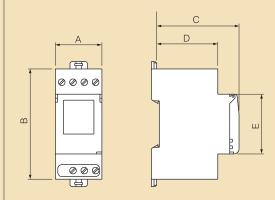
Cat. no. 6499 14 A and 6499 36 A


MaxiRex 4QT and MaxiRex 5QW


Cat. no. 6499 15 and 6499 39 with terminal cover

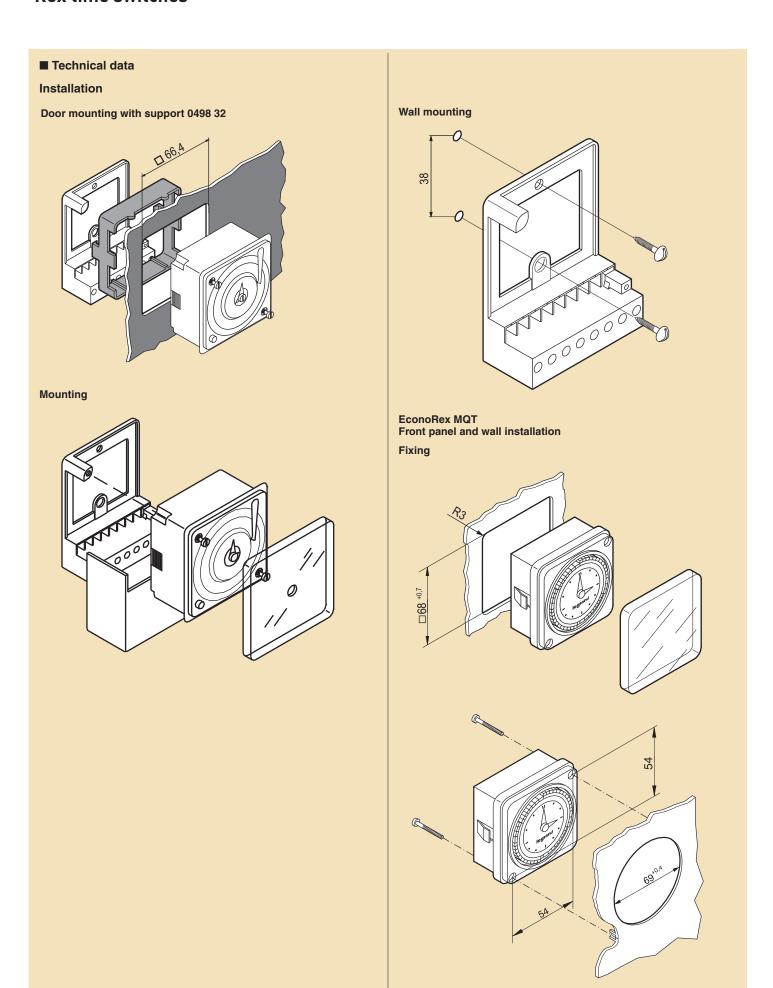
MaxiRex QT


Cat. no. 6499 64



EconoRex

Cat. no. 0499 86


Rex modular time switches

Catalogue no.	Description	Α	В	С	D	E
0037 40	MicroRex QT11	17.5	86	60	44	45
0037 53	MicroRex QT31	53	90	60	44	45
0037 55	MicroRex QW31	53	90	60	44	45
0047 61	AlphaRex D21	36	83	60	44	45
0047 71	AlphaRex D22	36	83	60	44	45
0047 64	AstroRex D21	36	83	60	44	45
0047 67	AstroRex D22	36	83	60	44	45

□ legrand

Rex time switches

Lexic time switches for the use of time switches and staircase switches

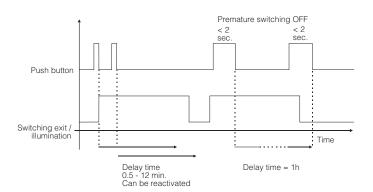
Mode of loading :	Conduct :	Rule:	
Load ohmic	Starting current is permanent current i = i0	Nominal current according to the label (IN)	
Electronical ballast for : → 12 V halogen lamps → Fluo lamps (EVG,s)	i / io = 2	12 times starting current Current is limited electronically Without any problems. (until IN x 0.8)	
→ Incandescent lamps → Halogen lamps (230 V, 50 Hz)	Starting current (i / i0 = 1015) approx.1/3s	1015 times starting current Great load of incandescent lamps or load of halogen lamps. (see tabloid) Use a contactor! (from IN x 0,4)	
→ Compact fluorescent lamps with ballast → Fluorescent lamps (with electrical ballast)	Starting current (i / i0 = 16)	16 times starting current critical Use a contactor! (from IN x 0,03)	
Fluo lamps: → Inductive, duo, serial compensated	Course of current with fluo tubes (i / i0 = 3)	3 times starting current (see tabloid) Without any problems (until IN x 0,7)	
Gas discharge lamp in shunt compensation: → Fluo lamps → Mercury vapour lamps → Metal halogen vapour lamps → Sodium vapour lamps	Course of current on capacitor - load. (i / i0 = 2040)	2040 times starting current The shunt compensation is very problematic for all switching contacts. Parallel capacitors: time - switches max. 4,7 µF staircase - switches max. 7,0 µF Use a contactor!	
Transformer: → Halogen lamp transformer → Separation transformer	Conduct similar to shunt compensation	2030 times starting current max. 1 / 10 of the nominal load is permissible. Use a contactor!	
Motor load: (with starting capacitor) → Ventilator → Pump → Compressor	Course of current on motor load. (i / i0 = 1050)	1050 times starting current Different drives, max. 1 / 10 of the nominal loa is permissible. Use a contactor!	

The type of load substantially affects its lifespan. In time switches and staircase lighting timers only the current at the start is critical. Failure through a closed contact is not a problem because of the small number of operations. (inductive load $\cos\phi = < 0.6$)

Lexic Rex-time lag switch

Lexic Rex-time lag switch

■ Technical data



Switching contact: 1 make contact μ , 16 A

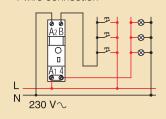
Pack	Cat. nos.	Time lag switch	Number of 17.5 mm
10 /100	0047 02	Rex800 multi Time lag switch 0.5 sec - 12 min. 230 V~	modules 1
		Rex800 multi Multi-fuctionlal staircase timer: • standard staircase timer • staircase timer with pre-warning fuction • staircase timer with long time function (11 e) staircase timer with long time function (11 e) staircase timer with early warning and fuction • disconnectable time relais • disconnectable time relais with early war • electronic relais lighting time switch 0,5-12 min. for all driving voltages from 8-230 V/AC DC 3-/4-wire connection, 16A/230V~, 50/60 Hz 2000 W lamp load resistance/Halogen bult 1000 VA fluorescent lamps, serial compens 120 VA fluorescent lamps, parallel compen Parallel compensation: C <= 100µF at the maximum length of trip lines: 100 m	fong time function cz, cz, os 230 V, sation asation

Function diagram

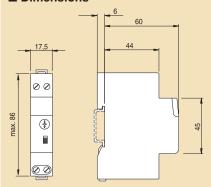
Programming

Short duration: When push button is pressed for less than 2 seconds, light will remain ON for preset period, eg. 2 minutes

Long duration: When push button is pressed for more than 2 seconds, light will remain ON for 1 hour, eg. during maintenance or housekeeping


Rex800 0.5 sec-12mi 00 (D) Auto. Man.

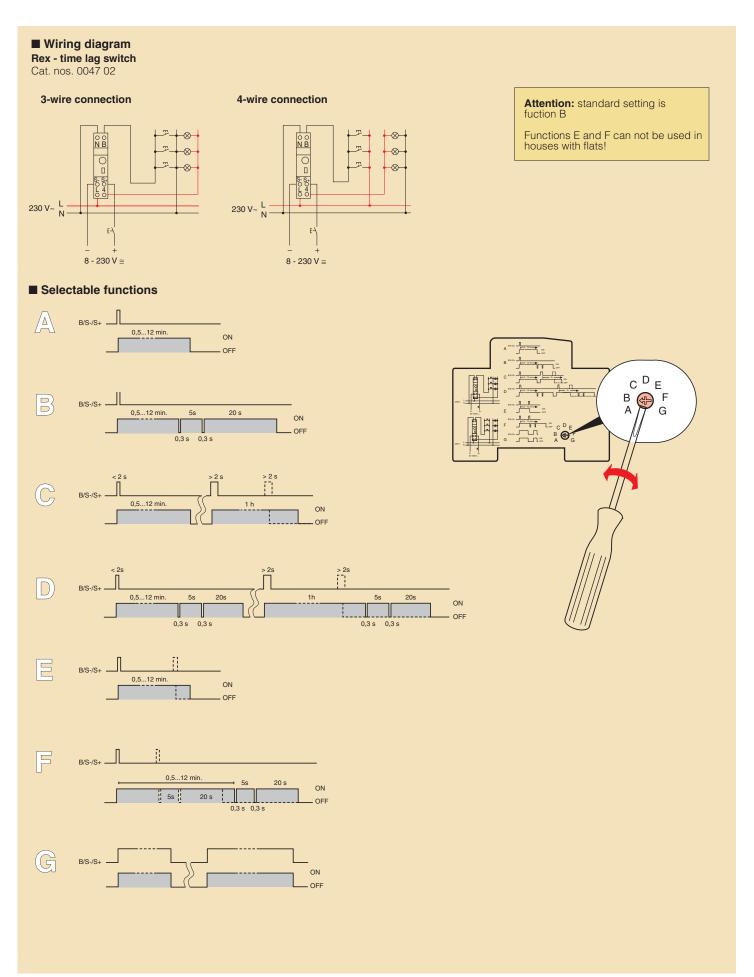
■ Wiring diagram


Rex800

3-wire connection 0 Ν 230 V \sim

Rex801 4-wire connection

■ Dimensions



Dimensions in mm, 1 inch = 25.4mm

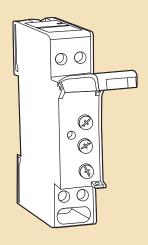
156

Rex - time lag switch

la legrand

Lexic multifunctional time delay relay

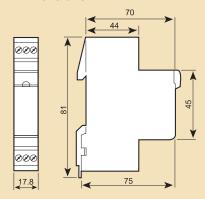
0047 44

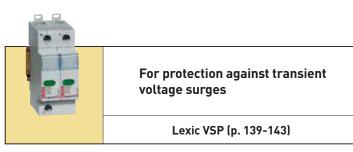

Dimensions (p. 170) Technical data (p. 158-160)

For controlling the switching ON and / or OFF of equipment (lighting, ventilation, control systems, signalling systems) for preset periods from 0.1 s to 100 hours Supply voltage: 12 V - 230 V AC/DC $\pm 10\%$ Output: 8 A - 250 V AC (cos ϕ = 1) per change over switch

Pack	Cat. nos.	Time delay relay Number of 17.5 mm
1	0047 44	Rex801 With 10 functions modules 1
		ON/OFF delay Control input Y1
		Contact
		Flasher (impulse starting) Control input Y1
		Contact
		Flasher (off-time starting)
		Control input Y1
		Contact Passing contact Control input Y1
		Contact
		Additive ON delay
		Control input Y1
		Contact Additive fleeting ON Control input Y1
		Contact

Lexic multifunctional time delay relay

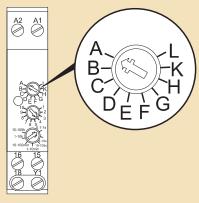

■ Technical data



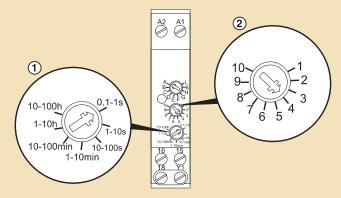
Characteristics

Distribution voltage	between A1 - A2 : 12 V to 230 V AC / DC
Tolerance	-10 % to +10 %
Frequency	50 to 60 Hz
Control voltage	equal to distribution voltage
Time domain	0.1 seconds up to 100 hours
Power draw	230 V AC / DC = 1.4 W, 12 V AC / DC = 0.5 W
Repeating accuracy	± 0.2 %
Setting accuracy	± 5 % at 25°C
Control impulse	50 ms
Delay time	max. 100 ms
Bridging time in case of voltage cutoff	200 ms
Breaking capacity	8 A (4) 250 V
Bulbs	2 A 250 V
Electrical lifetime	10⁵ hysteresis at 2000 W cos φ = 1
Mechanical lifetime	10 ⁷ hysteresis
Length of trip line	max. 20 m
Ambient temperature	- 20°C + 60°C
Storing temperature	- 30°C + 70°C
Cross section for connection	single wire 1 4 mm²,
	multiwire 1.5 2.5 mm ²

■ Dimensions


Dimensions in mm, 1 inch = 25.4mm

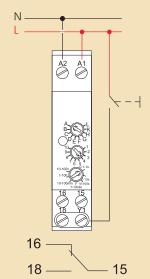
Lexic multifunctional time delay relay (continued)



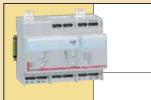
Function selection

- A with delayed response time
- B with delayed response time, additive
- C with delayed release time
- D with delayed response and release time
- E time relay with flashing indicator, starting with impulse
- F time relay with flashing indicator, starting with break
- G pulse shaper
- H wiping contact relay
- K wipe contact flick contactor
- L wipe contact flick contactor, additive

Adjustment of delay time



- 1 adjustment of delay tolerance
- 2 precise adjustment of delay time

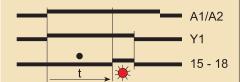

The position of the delay selector switch 1 multiplied by the potentiometer adjustment 2 = delay time T.

Example: 1 - 10 seconds x = 4 seconds

Connection

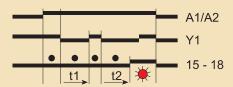
In case the time switch is connected to the mains supply, the connection to protective low voltage is not allowed and vice versa, i.e. in case the time switch is connected to protective low voltage, the connection to the mains supply is not allowed.

Remote control dimmer


Lexic dimmer (p. 163)

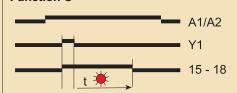
Lexic multifunctional time delay relay

■ Technical data


Function A

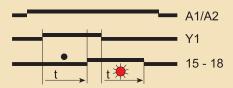
Time relay with delayed response time

When feeding the control voltage, a certain period of time begins to pass, and at the end of this time period the make contact changes from 15-16 to 15-18. After an interruption, the time period begins to pass again.


Function B

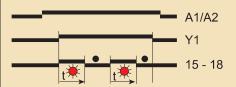
Time relay with delayed response time, additive

If the sum of control voltage interruptions is equal to the adjusted time, the make contact will close. The make contact remains closed until the distribution voltage is disconnected.


Function C

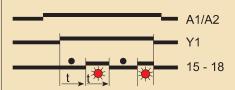
Time relay with delayed release time

When feeding the control voltage, the make contact changes from 15-16 to 15-18. By interrupting the control voltage, a certain period of time begins to pass, and at the end of this time period the make contact returns to the neutral position 15-16.


Function D

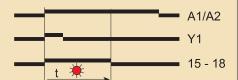
Time relay with delayed response and release time

When feeding the control voltage, a certain period of time begins to pass, and at the end of this time period the make contact changes from 15-16 to 15-18. If the control voltage is interrupted then, a further time lapse starts which is as long as the first one. At its end the make contact returns to neutral position 15-16. After an interruption of the delayed response time, the period of time begins to pass again.


Function E

Time relay with flashing indicator, starting with impulse

As long as the control voltage is fed, the make contact changes between 15-16 and 15-18. When feeding the control voltage, the make contact immediately changes to 15-18.


Function F

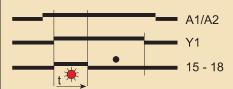
Time relay with flashing indicator, starting with break

As long as the control voltage is fed, the make contact changes between 15-16 and 15-18. When feeding the control voltage, the make contact remains at 15-16 for the time being.


Function G

Pulse shaper

When feeding the control voltage, a certain period of time begins to pass, and at the end of this time period the make contact changes from 15-16 to 15-18.


Function H

Wiping contact relay

When feeding the control voltage, a certain period of time begins to pass, and at the end of this time period the make contact changes from 15-16 to 15-18. In case of cutting off the control voltage during the wiping time, the make contact immediately returns to 15-16, and the remaining time is deleted.

Function K

Wipe contact flick contactor

When feeding the control voltage, the make contact changes from 15-16 to 15-18 and returns after the wiping time has passed. In case of cutting off the control voltage during the wiping time, the make contact immediately returns to 15-16, and the remaining time is deleted.

Function L

Wipe contact flick contactor, additive

When the distribution voltage A1-A2 is connected and the control voltage is fed, the make contact changes from 15-16 to 15-18. If the sum of control voltage interruptions is equal to the adjusted time, the make contact will open and can only be closed after a voltage cutoff.

Safety instructions

- The product may only be installed and mounted by an expert
- The electrical safety can only be guaranteed on condition that the product and all accessories supplied are installed in the according product specific environment and that the EMC regulations are kept.
- In case of any intervention in the product, Legrand accept no liability.

Modular power management solutions

> Time switches

- Din channel mounting
- Analogue, digital and astronomical versions
- 24 hrs. and 7 days programmes

> Contactors

- Din channel mounting
- Current rating 20 A to 63 A
- 2 pole / 3 pole / 4 pole

Lexic power contactors

0040 69

0040 78

Dimensions (p. 170) Technical data (p. 162)

Conform to IEC 61095 Label holder Manual ON and OFF on front face (use screw driver) ON and OFF indicator

Pack	Cat. nos.	Power contactors with 230 V \sim coil
		Double pole - 250 V
		I max Type of Number of
1 /42	0041 28	25 A
1 /42	0041 29	25 A
1 /42	0040 68	40 A - \d - \d - \d - \d 230V 2 N/O 2
		Triple pole – 400 V \sim 230 V \sim coil
1 /12	0040 69	40 A \d \d \d 3 N/O 3
1 /12	0040 77	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
		Four pole – 400 V
1 /12	0040 70	40 A , , , , , 4 N/O 3
1 /12	0040 78	40 A 63 A 63 A 4 N/O 3 4 N/C 3
1 /12	0040 79	63 A 1 1 4 N/C 3

Auxiliary devices for contactors

Auxiliary changeover switch

Fitted on left hand side of contactor
Used to signal the position status of the contacts on
the product to which it is connected.

		the prod	he product to which it is connected.						
		I max	Voltage	Changeover switch	Number of 17.5 mm modules				
1 /42	0040 85	5 A	250 V√	N/C + N/O	0.5				
1 /42	0041 85	5 A	250 V√	N/C + N/O	0.5				

For cat nos.0041 28 & 0041 29 use 0041 85

Lexic power contactors

■ Technical characteristics

Operating characteristics of contactor

Cat. no.	0041 28	0041 29	0040 68	0040 77	0040 79	
Power circuit				'		
Rated operating current (le)						
- at AC 7a	20 A	20 A	40 A	40 A	63 A	
- at AC 7b	2071	2071	1071	1071	0071	
Nominal Voltage (Un)	250 V	250 V	250 V	400 V	400 V	
Rated operating voltage (Ui)	250 V	250 V	250 V	400 V	400 V	
Rated impulse withstand	4 kV	4 kV	4 kV	4 kV	4 kV	
voltage (U imp)						
Rated operating voltage (Ue)						
- across the poles (between	250 V	250 V	250 V	400 V	400 V	
upstream & downstream of a	200 .				100 1	
contact)						
- phase to phase	400 V	400 V	400 V	400 V	400 V	
(between 2 contacts)					100 1	
Rated breaking and making						
capacity - At AC7a	1.5 x le	1.5 x le	1.5 x le	1.5 x le	1.5 x le	
- At AC7b	8 x le	8 x le	8 x le	8 x le	8 x le	
Dissipated power per contact	0 x 10	1 0 % 10	1.5 VA	0 x 10	0 / 10	
Frequency	50 / 60 Hz					
Isolating distance	complies with standard NF EN 61095, i.e. > 3mm					
Degree of pollution	2					
(as per IEC 61095)			_			
Short circuit protection	20 A	20 A	40 A	40 A	63 A	
by Lexic MCB						
Control circuit	<u> </u>	-				
Rated voltage (Uc)			230 V			
Operating voltage		from	0.85 Uc to 1.	1 LIc		
Control circuit/power			4 kV			
circuit insulation voltage						
Max. Speed		1200 a	actuations pe	er hour		
Coil consumption - Inrush (VA)	12 VA	13 VA	14 VA	20 VA	21 VA	
- Hold (VA)	3.2 VA	3.2 VA	3.2 VA	6.2 VA	6.2 VA	
State change time	0.2 77	0.2 ***	50 ms	0.2 77	0.2 */ (
Endurance						
Number of off load actuations						
using handle	1000	1000	1000	1000	1000	
Number of off load actuations	2,000,00	2,000,000	2,000,000	2,000,000	2,000,000	
using electrical control	2,000,00	2,000,000	2,000,000	2,000,000	2,000,000	
Number of actuations at le in	100,000	100,000	100,000	100,000	100,000	
AC7a: 100 000	100,000	100,000	100,000	100,000	100,000	
Others						
	1 v 4 mm²	2 v 2 F2	1 11 05	mm² cr O d	6 mm²	
Terminal capacity - Rigid - Flexible		2 x 2.5 mm ²		mm² or 2 x 1		
	1X4 mm² or	2 x 2.5 mm ²		mm² or 2 x 1	io mm²	
Operating temperature	- 5°C to + 40°C - 20°C to + 70°C					
Storage temperature		- 2	20°C to + 70°			
Add on accessories						

Recommendations

Derating of contactors mounted in modular boxes if the internal temperature is $> 40\ ^{\circ}\text{C}$

Contactor rating	40 °C	50 °C	60 °C	70 °C
le = 16 A	16 A	14 A	12 A	10 A
le = 20 A	20 A	18 A	16 A	14 A
le = 40 A	40 A	36 A	32 A	29 A
le = 63 A	63 A	57 A	50 A	46 A

Install a spacing unit every two contactors (Cat.No 0044 40 or 0044 41)

■ Contactors performance(1)

- Auxiliary changeover switch •

1 - Lighting

Maximum number of lamps per phase according to the circuit:

- 400 V \sim 3-phase + neutral (connection between phase and neutral): values in the table per phase (multiply by 3)
- \bullet 230 V \sim 3-phase without neutral (connection between phase): values in the table divided by $\,^{\vee}3$
- Incandescent lamps Tungsten and 230 V halogen filament

	Power unit	40 W	60 W	75 W	100 W	150 W	200 W	300 W	500 W	1 000 W
	16 A	40	32	27	21	13	11	8	4	2
	20 A	47	37	30	23	15	12	8	5	2
	40 A	118	87	72	52	36	26	18	11	7
ı	63 A	156	115	96	71	48	35	25	15	8

Halogen lamps with 12 V ferromagnetic transformer

Power unit	20 W	50 W	75 W	100 W	150 W
16 A	16	11	9	7	4
20 A	19	12	10	8	5
40 A	45	29	25	20	15
63 A	64	42	34	28	19

- Fluorescent tubes - Compact fluorescent without compensation

Power unit	7 W	10 W	18 W	26 W
16 A	52	47	42	27
20 A	56	51	43	28
40 A	105	94	68	53
63 A	128	113	88	79

Compact fluorescent with integrated power supply

Power unit	7 W	11 W	15 W	20 W	23 W
16 A	98	82	62	51	41
20 A	102	85	63	52	42
40 A	125	106	94	71	56
63 A	146	128	113	88	78

Simple and double

Power unit		15 W	18 W	20 W	36 W	40 W	58 W	65 W	115 W	140 W
	16 A	24	24	24	22	22	15	15	8	8
Non	20 A	28	28	28	26	26	17	17	10	10
compensated	40 A	75	75	75	65	65	40	40	22	22
	63 A	105	105	105	93	93	58	58	33	33
	16 A	16	16	16	16	16	11	11	6	6
Parallel	20 A	18	18	18	18	18	13	13	6	6
compensated	40 A	40	40	40	40	40	30	30	14	14
	63 A	60	60	60	60	60	43	43	20	20
	16 A	-	32	32	18	18	11	11	7	7
Serial	20 A	-	38	38	21	21	13	13	9	9
compensated(2	40 A	-	85	85	45	45	29	29	18	18
	63 A	-	120	120	65	65	40	40	24	24

With electronic ballast

Power unit		18 W	36 W	58 W
	16 A	32	28	17
Single	20 A	35	30	18
Siligle	40 A	64	35	27
	63 A	79	46	31
	16 A	16	14	8
Double ⁽²⁾	20 A	17	15	9
Double	40 A	32	18	14
	63 A	40	22	15

- Discharge lamps

Sodium vapour high pressure or metal iodide

Power unit		70 W	150 W	250 W	330 W	400 W	1000 W
	16 A	9	5	3	3	2	-
Without	20 A	10	6	3	3	2	1
compensation	40 A	22	15	9	8	6	2
	63 A	30	19	11	9	7	3
	16 A	6	6	3	2	2	1
With	20 A	8	8	3	2	2	1
compensation	40 A	20	20	8	8	7	3
	63 A	25	25	11	10	9	5

Mercury vapour high pressure

, ,								
Power unit		50 W	80 W	125 W	250 W	400 W	700 W	1000 W
	16 A	11	9	7	3	1	-	-
Without	20 A	12	10	8	3	2	1	-
compensation	40 A	36	27	19	10	7	4	3
	63 A	52	39	27	14	10	6	4
	16 A	9	7	5	3	1	-	-
With	20 A	10	8	6	3	2	1	-
compensation	40 A	25	21	14	7	4	3	2
	63 A	30	25	16	9	5	3	2

2 - Motors - Maximum (kW)

	16 A	20 A	40 A	63 A
230 V single phase motor with capacitor	0.9	1.1	2.5	4
400 V 3-phase motor	2.7	3.3	7.5	12

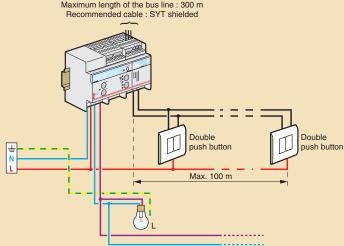
3 - Heating -


Maximum power according to the number of operations per day (kW)

Operations per day	16 A	20 A	40 A	63 A			
230 V single phase supply							
≤50	3.5	4.5	9	14			
75	3	3.5	7.5	12			
100	2.5	3	6	9.5			
250	1.5	2	4	6			
500	1	1	2.5	4.5			
400 V 3-phase supp	ly						
≤50	10	13	26	41			
75	9	11	22	35			
100	7	9	17	26			
250	3	4	8	13			
500	2	3	6	9			

Lexic Remote control dimmer

0036 71



Pack	Cat. nos.	Dimmers
1	0036 71	DIN rail mo For incande 230 V√, EL ferromagne Can be cor illuminated peripheral

ll mounting andescent and halogen lamps c, ELV halogen lamps with agnetic or electronic transformers e controlled with simple non ated double push-buttons or BUS Lexic

Remote control dimmer

■ Compatible load

Number of 17.5 mm modules

6

	0	0	8	4	6	0
Cat.No			Ø-26-/-Ø-36	P+11	₩ ₩± <u></u>	+_
0036 71 Max. 1-000 W Min. 40 W	yes	yes	no	yes	yes	no

- Incandescent lamps
- Halogen lamps 230 V

Lexic change over switches

Lexic

push-buttons and control switches

0043 82

Dimensions (p. 170)

250 V√ - 50/60 Hz 250 V\2 - 50/60 Hz
Conform to IEC 60669-1
Power dissipation: 1.5 W per pole
AC 22 as per IEC 60947-3
Terminal capacity - Rigid: 4 mm²
Flexible: 4 mm²
Degree of protection: IP20

Pack	Cat. nos.	Changeover	switches	
		Two-way - 250) V \sim	
10 /100	0043 82	Nominal rating (A)	١	Number of 17.5 modul
		Double two-w	ay - 400 V \sim	
5 /50	0043 83	20	<u> </u>	2
		Double two-w	ay with centre off - 400 V \sim	
5 /50	0043 86	20	L.J L.J 	2
		Four Pole two	-way centre off - 400 V \sim	
2/20	6040 22	40		4

Dimensions (p. 170)

Supplied in push-button position Can be converted to control switches Can be converted to control switcher Accept insertion of supply busbars Conform to standard IEC 60669-1 AC 12 according to IEC 60947-5-1 Nominal rating: 20 A Rated voltage: 250 V Power dissipation: 2 kW per pole Nominal frequency: 50/60 Hz Terminal capacity - Rigid: 4 mm² Flexible: 4mm² Degree of protection: IP20

Pack Cat. nos. Single functions

0044 64 1 N/C + red

indicator(1)

10/60

Degree of protection: IP20

er of
nodules
r of nodules

(1) supplied with E10 lamps 230 VA

Lexic indicators

Lexic ammeter and voltmeter

Pack	Cat. nos.	Single indicators 250 V \sim	Number of						
10 /100 10 /100 10 /100 10 /100	0044 83 0044 84 0044 85 0044 86	Red Orange	1 1 1 1						
Replacement lamps E-10 - 1.2 W									
10 /200	0044 36	230 V neon							

Pack	Cat. nos.	Ammeters	
		Analogue ammeter Measures the intensity of the current circula in an electrical circuit in Amperes (A)	ating Number of
1 /12	0046 02	Direct connection To alternating or direct current	17.5 mm modules
1,12	00+0 02	Range: 0-30 A	4
		Connected using a 5 A current transformer (CT)	
1 /12	0046 00	The meter is fitted with an appropriate dial for the intensity of the current being measured	4
		Measuring dials for ammeter cat. no 004	6 00
2 /84	0046 10		
2 /84 2 /84	0046 13		_
2 /84	0046 17		ului/
2 /84	0046 18	0-400 A	!
2 /84	0046 20		1/2
2 /84 2 /84	0046 21 0046 22		
2 /84	0046 23		

		Voltmeters	Number o
		Analogue voltmeter	17.5 mm modules
1 /12	0046 60	Used to measure the AC or DC voltage (V) in an electrical circuit Range 0-500 V	4
		Digital ammeter / voltmeter	
1	0046 63	Display A, kA, V Measures the current or the voltage of the circuit depending on the connection made - Ammeter mode: connected via a 0 - 5 A current transformer (CT) Reading range adjusted according to CT used (100, 400, 600 or 1-000 A) Voltage: 230 V± - 50/60 Hz Scale: 0 - 4-000 A - Voltmeter mode: measures the AC or DC voltage of an electrical circuit; scale 0 - 500 V	4

Lexic

selector switch and current transformer

0046 52

0047 79

Pack	Cat. nos.	Selector switches	
		For manual switching of circuits being me	asured
1 /20	0046 50	4-position ammeter selector switch For measuring currents in a 3-phase circuit using only one ammeter with a current transformer (3 modules)	L3•
1 /20	0046 52	4-position voltmeter selector switch For measuring phase-to-phase voltages of a 3-phase circuit without neutral using only one voltmeter (3 modules)	0 L3L1 L1L2 L2L3
1 /20	0046 53	7-position voltmeter selector switch For measuring phase-to-phase voltages and phase-neutral voltages of a 3-phase circuit with neutral (3 modules)	L1L2 L1 N L2L3 L2 N L3L1 L3 N

Current transformers ((CT)
Libraria de Ministra de Caracteria de Caract	

Used with ammeters or electricity meters Supply a current of 0 to 5 A to the secondary which is proportional to the primary current Fix to plate or rail EN 50022

		which is proportional to the primary current					
		Fix to plate or rail EN 50022					
		Transformation ratio	Precision in %	Power in VA			
1 /12	0046 31	50/5	3	1.25			
1 /12	0046 34	100/5	1	2.5			
1 /12	0046 36	200/5	1	5.5			
1 /12	0047 75	300/5	1	11			
1 /12	0046 38	400/5	1	12			
1 /12	0047 76	600/5	1	12			
1 /12	0047 77	800/5	1	15			
1 /12	0047 78	1000/5	1	20			
1 /12	0047 79	1250/5	1	15			

Lexic

ammeter, voltmeter and current transformer

■ Technical data

Ammeter

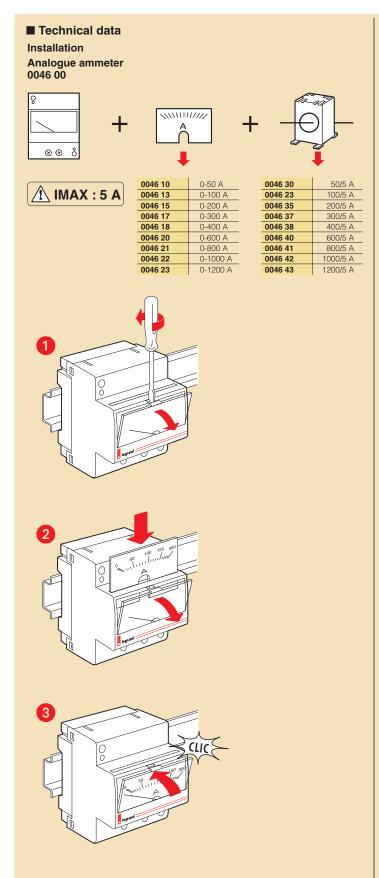
			B
	Anai	ogue	Digital
Type of measurement	Ferrom	agnetic	Electronic via shunt
Frequency	50 to	60 Hz	50 to 60 Hz
Precision	± 1.	.5 %	± 1% to + 1 digit
Operating temperature	- 10°C to + 40°C		- 10°C to + 40°C
Storage temperature	− 20°C to	+ 80°C	- 20°C to + 70°C
Consumption :			
voltage circuit		-	4.5 VA
measurement circuit	1.1	VA	1 VA
Connection	Direct	Via CT	-
Size	6 mm²	4 mm²	2 x 2.5 mm ²
Conformity to standards	EN 61010-1		EN 61010-1

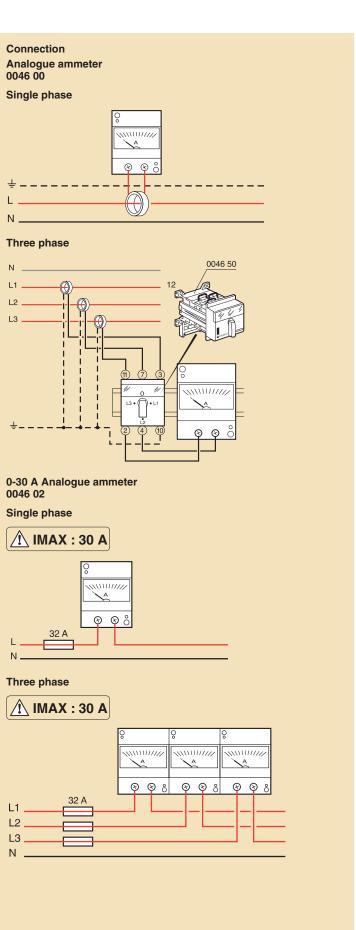
Current transformers (CT)

Index of protection	IP 20
Operating frequency	50/60 Hz
Connection size : cage terminals	2 x 2.5 mm ²
clips	6.3 x 0.8
Operating temperature	- 10°C to + 60°C
Storage temperature	- 20°C to + 70°C
Conformity to standards	IEC 60044-1

Voltmeter

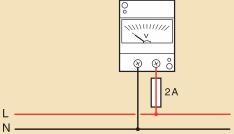
	Analogue	Digital
Type of measurement	Ferromagnetic	Electronic integration
Frequency	50 to 60 Hz	50 to 60 Hz
Precision	± 1.5 %	± 1% to ± 1 digit
Operating temperature	- 10°C to + 40°C	- 10°C to + 40°C
Storage temperature	− 20°C to + 80°C	− 20°C to + 70°C
Consumption	3 VA	4.5 VA
Connection size	2 x 2.5 mm ²	2 x 2.5 mm ²
Conformity to standards	EN 61010-1	EN 61010-1


■ Current transformers (CT)

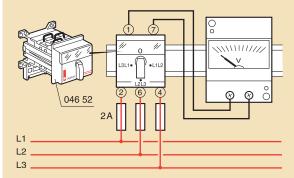

Dimensions

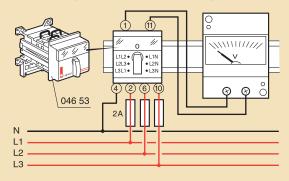
		Opening for cable max. Ø (mm)	Opening for bar w. x th. (mm)	Fixing centres on plate (mm)
		CT single-phas	e	
CT 50/5 100/5 200/5	4 1000 S	Ø 21	16 x 12.5	on rail EN 50 022
CT 300/5	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Ø 23	20.5 x 12.5 25.5 x 11.5 30.5 x 10.5	50 x 45
CT 400/5		Ø 35	40.5 x 10.5	54 x 45
CT 600/5 800/5 1-000/5	30	-	32 x 65	on bar
CT 1-250/5	96	-	34 x 84	on bar

Lexic ammeter

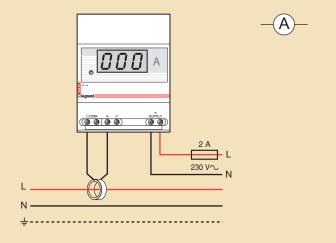


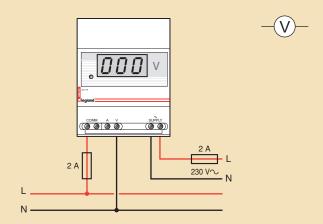
Lexic


ammeter and voltmeter

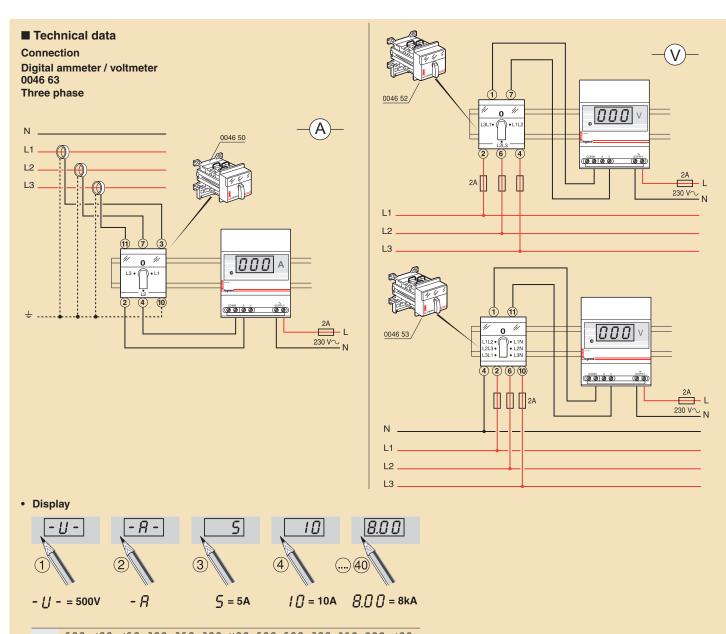

Three - phase

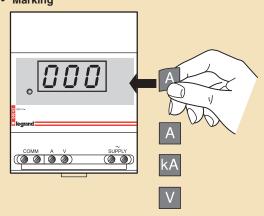
With 4 position switch cat. no. 0046 52 : Measurement between phases in three phase circuit.




Three-phase

With 7 position switch cat. no. 0046 53: Measurement between phases and between phase and neutral in a three-phase + neutral circuit.

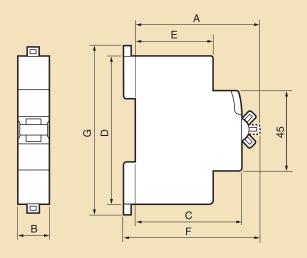

Connection
Digital ammeter / voltmeter
0046 63
Single phase


Lexic ammeter and voltmeter

A 5.00 10.0 15.0 20.0 25.0 30.0 40.0 50.0 60.0 70.0 75.0 80.0 10.0 120 150 160 200 250 300 400 500 600 700 75.0 80.0 100

kA 100 120 150 160 200 250 300 400 5.00 6.00 100 150 8.00 V 500

Marking



Select the desired measure (V or A) by pressing repeatedly on the button.lf"A"is selected, press repeatedly on the button to choose the desired rating (see table below).When the selection display is cleared, your selection has been saved.

Lexic modular din-rail products

■ Dimensions

Products	Α		В				С	D	E	F	G	
		SP	SPN	DP	TP	TPN	FP					
Lexic MCBs (0.5 to 63A)	70	17.7	35.6	35.6	53.4	71.2	71.2	60	83	44	76	94
Lexic MCBs (80 - 125A)	70	26.7	-	53.4	80.1	-	106.8	60	83	44	76	89
Lexic Isolators	70	-	-	35.6	53.4	-	71.2	60	83	44	76	94
Lexic RCCB - type AC (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
Lexic RCCB - type AC (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
Lexic RCCB - type A - S (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
Lexic RCCB - type A - S (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
Lexic RCCB - type Hpi (DP)	70	-	-	35.6	-	-	-	60	83	44	76	94
Lexic RCCB - type Hpi (FP)	71.5	-	-	-	-	-	71.2	60	83	44	77.5	94
Lexic RCBO - type AC	70	-	-	71.2	-	-	142.4	60	83	44	76	94
Lexic RCBO - type AC (DP 2 mod.)	70	-	-	35.6	-	-	-	60	83	44	76	94
Lexic RCBO - type Hpi (DP 2 mod.)	70	-	-	35.6	-	-	-	60	83	44	76	94
Auxiliary contacts cat. no. 0073 50/51/52/53	70			8.	.7			60	83	44	76	83
Auxiliary contacts cat. no. 0073 54	70		17.7				60	83	44	76	83	
Shunt trip cat. no. 0073 60/61	70			17	'.7			60	83	44	76	83
Minimum voltage trip cat. no. 0037 54	70			17	·.7			60	83	44	76	83
Remote control for MCB / RCBO	74			5	4			74	83	44	80.5	89
Lexic MPCB	82.5			44	1.5			72.2	89	44	87.3	91
Lexic VSP	60	17.7	-	35.6	53.4	-	71.2	-	86	44	70	-
Lexic changeover switch cat. no. 0043 82	68			17	'.7			60	83	44	74	94
Lexic changeover switch cat. no. 0043 83/86	68			35	i.6			60	83	44	74	94
Lexic push button cum switch	68			17	'.7			60	83	44	74	94
Lexic indicators	68			17	'.7			60	83	44	74	-
Lexic dimmer	66	72			60	88	44	72	90			
Lexic contactors 20 A	62	17.8			60	83	44	67.5	-			
Lexic contactors 40 A (2 mod.)	60	35.6			61	80	44	67	-			
Lexic contactors 40 A / 63 A (3 mod.)	60	54			61	80	44	67	-			
Lexic ammeter	60	70			60	83	44	66	-			
Lexic voltmeter	60			7	0			60	83	44	66	-
Lexic selector switch	60			52	2.5			69	74	44.5	74	-

Loadster circuit breakers upto 60 A

L43105RO

L43205RO

Dimensions (p. 172) Technical data (p. 173)

Conforms to IEC 60947-2 Breaking capacity upto 3 kA Surface mounting

		0
Pack	Cat. nos.	Single pole 240/415 V \sim
		l .
		Nominal rating (A)
4/55	1.4000450	0 ()
1 /55	L43001RO	0.5
1 /55	L43003RO	1
1 /55	L43004RO	2
1 /55	L43005RO	2.5
1/ 55	L43105RO	5
1/55	L43107RO	7.5
1/ 55	L43110RO	10
1 /55	L43112RO	12.5
1/55	L43115RO	15
1/55	L43120RO	20
1/55	L43125RO	25
1/ 55	L43130RO	30
1/55	L43135RO	35
1 /55	L43140RO	40
1 /55	L43150RO	50
1 /55	L43160RO	60

	Double pole 240/415 V \sim
1/24 L43205RO 1/24 L43210RO 1/24 L43215RO 1/24 L43220RO 1/24 L43225RO 1/24 L43230RO 1/24 L43235RO 1/24 L43236RO 1/24 L43250RO	10 15 20 25 30 35 40 50

L43420RO

Dimensions (p. 172) Technical data (p. 173)

Conforms to IEC 60947-2 Breaking capacity 3 kA Surface mounting

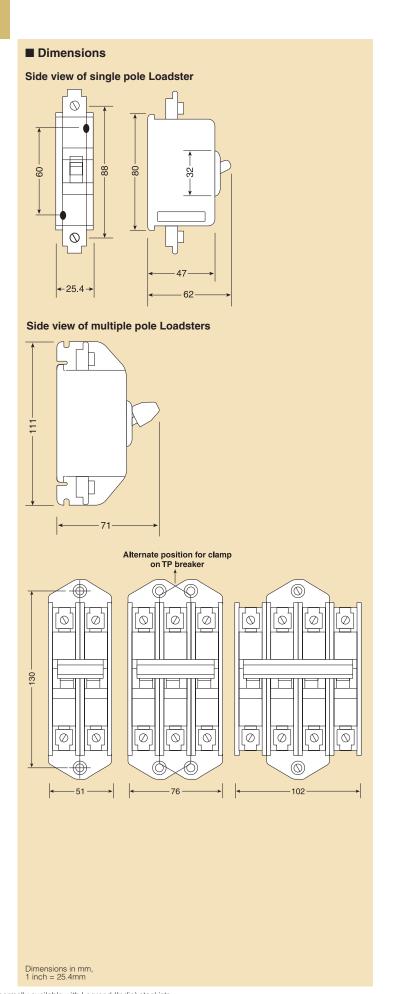
Pack	Cat. nos.	Triple pole 240/415 V \sim
		Nicocia el metio m (A)
		Nominal rating (A)
1 /16	L43305RO	5
1 /16	L43310RO	10
1 /16	L43315RO	15
1 /16	L43320RO	20
1 /16	L43325RO	25
1 /16	L43330RO	30
1 /16	L43335RO	35
1 /16	L43340RO	40
1 /16	L43350RO	50
1 /16	L43360RO	60

		Four pole 240/415 V \(\cdot \)
1/12 1/12 1/12 1/12 1/12 1/12	L43405RO L43410RO L43415RO L43420RO L43425RO L43430RO	Nominal rating (A) 5 10 15 20 25 30
1 /12 1 /12 1 /12 1 /12 1 /12	L43435RO L43440RO L43450RO L43460RO	35 40 50 60

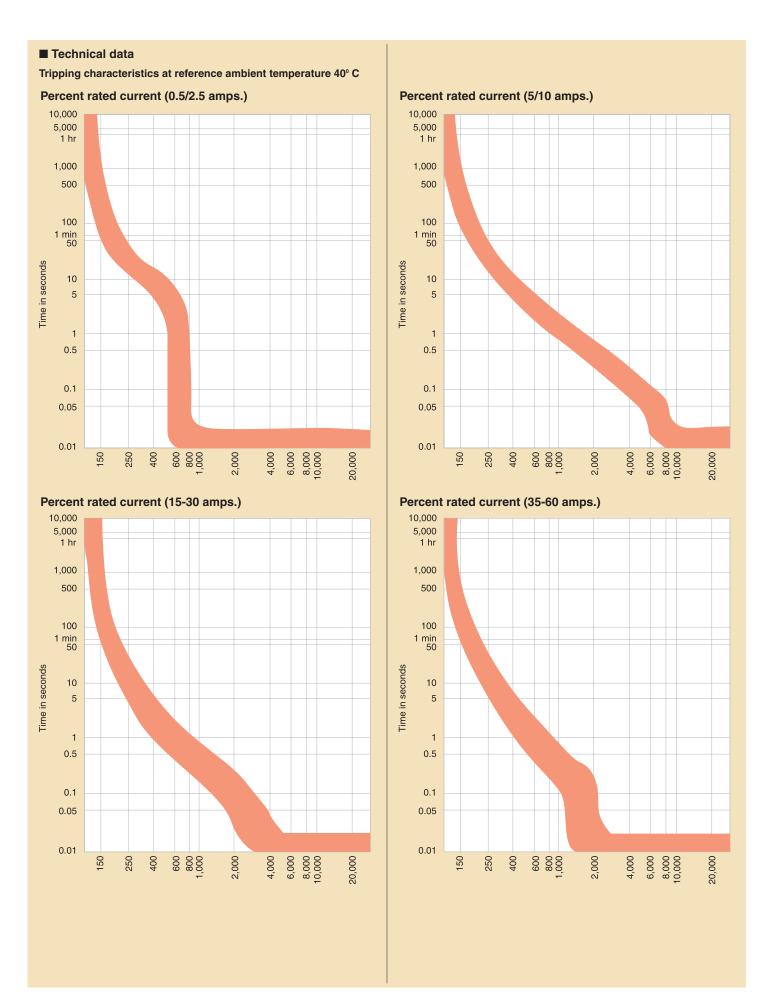
Note: Breaking capacity for current rating 0.5 A to 2.5 A is 1500 Å

Breaking capacity for current rating 5 A to 60 A is 3000 Å

Loadster isolators



L43299IO


Pack	Cat. nos.	$lacksquare$ Single pole + Neutral 240/415 V \sim
1 /16 1 /16 1 /16	L43098IO L43099IO L43100IO	Nominal rating (A) 30 60 100
	Triple pole 240/415 V \sim	
1 /16 1 /16 1 /16	L43298IO L43299IO L43300IO	Nominal rating (A) 30 60 100
	Four pole 240/415 V \sim	
1 /12 1 /12 1 /12	L43398IO L43399IO L43400IO	Nominal rating (A) 30 60 100

Loadster Isolators

Loadster MCBs

